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SSY280 Model Predictive Control

Exam 2015-03-19

14:00 – 18:00

Teacher: Bo Egardt, tel 3721.

The following items are allowed to bring to the exam:

• Chalmers approved calculator.

• One A4 sheet (front+back page) with your own notes.

• Mathematics Handbook (Beta).

Note: Solutions should be given in English! They may be short, but
should always be clear, readable and well motivated!

Grading: The exam consists of 5 problems of in total 30 points. The
nominal grading is 12 (3), 18 (4) and 24 (5).
Review of the grading is offered on April 2 at 12.00 – 13.00. If you cannot
attend at this occasion, any objections concerning the grading must be filed
in written form not later than two weeks after the regular review occasion.

GOOD LUCK!



Problem 1.

a. The constrained LQ type MPC studied during the course gives a non-
linear control law with a special structure. Describe this particular
structure! (2 p)

b. A classmate of yours shows you a piece of code to be used for MPC of
the constrained LQ type. The code is claimed to solve the constrained
optimization problem

minimize f(z) =
1

2
zTQz + pT z + ε‖∆h‖2, Q > 0

subject to Gz ≤ h+ ∆h

Az = b

∆h ≥ 0

What is this type of constrained optimization problem called? Which
particular feature does the code provide? Explain your answer well!

(2 p)

c. You are planning to apply an MPC to a system, which has 2 inputs and
2 measured/controlled outputs. The following statements also hold:

1. The plant model is a linear state space model of order 3

2. All three states are measurable

However, you have realised that the two outputs are affected by un-
known, slowly-varying load disturbances, which requires a modification
of the plant model. Modify the two statements above so that they apply
to the revised model. Explain! (2 p)

d. One attractive feature of MPC is the ability to impose constraints on
critical states or outputs. If you want to use this feature, you should
be aware of a possible disadvantage that requires some consideration.
Please explain! (2 p)

e. The terminal cost plays an important role when proving stability of a
receding horizon control strategy, and this can be made very explicit
in the unconstrained LQ case. Thus, show by a brief calculation how
an infinite-horizon LQ objective can be transformed into an equivalent
finite-horizon objective. (2 p)

Solution:
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a. The control law is a piecewise affine (or piecewise linear) feedback in
the state x.

b. The code is useful, because it solves a standard quadratic programming
(QP) problem, defined by a quadratic objective and affine equality and
inequality constraints. This is what is needed to implement an MPC of
the constrained LQ type. The algorithm cited contains a specific feature,
namely that the inequality constraints are soft: by the use of the slack
variable ∆h, the right hand side of the inequality can be increased.
This can help avoiding unfeasibility at the cost of an added cost to the
objective function.

c. This problem was modified due to an ambiguous formulation. After
augmenting the plant model with two constant load disturbances, the
model order is 5.

d. Constraints on states or outputs have the implication that the finite-
time optimal control problem, which is solved as part of the RHC, may
turn out to be infeasible for some initial states. In such cases you need
to devise some work-around like softening the constraints or switch to
a fall-back controller.

e. The optimal infinite-horizon objective can be re-written as

V 0
∞ = min

u(0:∞)

∞∑
i=0

(xT (i)Qx(i) + uT (i)Ru(i))

= min
u(0:N−1)

(N−1∑
i=0

(xT (i)Qx(i)+uT (i)Ru(i))+ min
u(N :∞)

∞∑
i=N

(xT (i)Qx(i)+uT (i)Ru(i))
)

= min
u(0:N−1)

(N−1∑
i=0

(xT (i)Qx(i) + uT (i)Ru(i)) + xT (N)Px(N)
)

where the last step follows from the fact that the optimal cost-to-go is
quadratic in the initial state with P being the solution of the algebraic
Riccati equation.

Problem 2.
Consider an MPC application with one control input u with lower and upper
limits

−2 ≤ u ≤ 1 (1)

and rate limits on the control moves according to

−0.5 ≤ ∆u ≤ 0.5 (2)
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We want to apply an MPC based on control moves ∆u and a control horizon
M = 2. The control constraints (1) and (2) can be expressed as F∆U ≤ e,
where ∆U is the incremental control vector over the control horizon. Deter-
mine the matrix F and the vector e. (4 p)

Solution: With k as the current sampling instant, the constraints on u imply
constraints on U = [u(k) u(k + 1)]T as

−2 ·
[
1
1

]
≤ U ≤ 1 ·

[
1
1

]
,

which gives constraints on ∆U = [u(k)− u(k − 1); u(k + 1)− u(k)]T as

−2 ·
[
1
1

]
≤
[
1
1

]
u(k − 1) +

[
1 0
1 1

]
∆U ≤ 1 ·

[
1
1

]
Compiling all these inequalities with the inequalities for the control rates gives
the following result:

F∆U =



1 0
1 1
−1 0
−1 −1
1 0
0 1
−1 0
0 −1


∆U ≤



1
1
2
2

0.5
0.5
0.5
0.5


+



−1
−1
1
1
0
0
0
0


u(k − 1) = e

Problem 3.
Consider the following constrained quadratic program:

minimize f(x) =
1

2
‖x‖2

subject to aTx = b

where a is a column vector and b is a scalar.

a. Compute the optimal solution and give a geometrical interpretation of
the result when x is a 2-dimensional vector. (4 p)

b. Formulate and solve the dual problem and conclude that strong duality
holds. (2 p)
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Solution:

a. The KKT conditions for the problem become[
I a
aT 0

] [
x0

ν0

]
=

[
0
b

]
By multiplying the first block row by aT and subtracting the result from
the last row, the following is obtained:[

I a
0 −aTa

] [
x0

ν0

]
=

[
0
b

]
From this follows immediately that

x0 = −ν0a =
b

aTa
· a

When n = 2, x0 is the point on the straight line aTx = b, for which the
corresponding vector from the origin is parallel to a. This vector is thus
orthogonal to the line, i.e. x0 is the point on the line that is closest to
the origin.

b. The Lagrangian becomes

L =
1

2
xTx+ ν(aTx− b),

which is minimized by differentiating and setting the derivative equal
to 0, giving x = −νa. Inserting this into the Lagrangian gives the dual
function

q = −1

2
aTaν2 − bν,

which can be seen to be concave. The dual problem is solved by again
differentiating with respect to ν, giving ν0 = − b

aT a
(which coincides

with what was obtained in (a)) and the dual optimal value

d0 = −1

2

b2

aTa
+

b2

aTa
=

1

2

b2

aTa
,

which is identical to the primal optimal value p0 = f(x0). Hence, strong
duality holds.
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Problem 4.
You want to apply an MPC to a system described by a linear state space
model (A,B,C) with 3 inputs and 4 outputs. Outputs number 1 and 2 are
important controlled outputs with specified setpoints that you would like to
attain in steady state. In addition, you would like to keep both control input
number 1 and output number 3 small in steady state. Suggest a formulation
of how to compute steady state targets, disregarding any constraints (in
practice your solution would serve as a starting point for some trial-and-
error tuning). (4 p)

Solution: Define outputs 1 and 2 as controlled outputs, i.e. z = Czx with

Cz = HC, where H =

[
1 0 0 0
0 1 0 0

]
. You need two inputs to attain the

corresponding two setpoints zsp, so one input remains “free”. The desired
values (in steady state) of u1 and y3 are both 0, so that by minimizing a
weighted combination of u2s,1 and y2s,3 (us and ys are steady state values), a
compromise of the two remaining objectives can be achieved. The steady state
target problem is thus as follows:

min
xs,us

(
uTs Rsus + xTsQsxs

)
subject to [

I − A −B
HC 0

] [
xs
us

]
=

[
0
zsp

]

where

Rs =

1 0 0
0 0 0
0 0 0

 Qs = CT


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

C
Problem 5.
A sampled data model for a DC motor is given by

x(k + 1) = Ax(k) +Bu(k) =

[
1 0.14
0 0.86

]
x(k) +

[
0.21
2.79

]
u(k)

y(k) = Cx(k) =
[
1 0

]
x(k)

We will investigate an MPC for this system, based on the minimisation of
the quadratic criterion

V (x, u(0), u(1)) =
4∑

i=1

ŷ2(i)
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with respect to the control signals u(0) and u(1), where we have (as usual)
placed the time origin at the current sampling time. It can be seen that the
prediction horizon is 4 and the control horizon is 2.

a. The predicted outputs over the prediction horizon can be computed
from the equation 

ŷ(1)
ŷ(2)
ŷ(3)
ŷ(4)

 = Ψx+ ΦU

where x is the current state and U = (u(0) u(1))T . Using the assump-
tion that the control signal is equal to 0 beyond the control horizon
(i.e. in contrast to the usual assumption that the control signal stays
constant beyond the control horizon), give expressions for Φ and Ψ
in terms of the system matrices A, B and C. Do not bother about
numerical values at this stage! (2 p)

b. Calculate the unconstrained optimal control law numerically. (2 p)
Hint: Here are some numerical expressions that may be useful:

Ψ =


1.00 0.14
1.00 0.26
1.00 0.36
1.00 0.45

 Φ =


0.21 0
0.60 0.21
0.94 0.60
1.22 0.94


ΦTΦ =

[
2.78 1.84
1.84 1.29

]
ΦTΨ =

[
2.98 1.08
1.75 0.70

]
c. We are now interested in the case with control constraints. In this

case, the minimization of V should be carried out with the constraints
|u(0)| ≤ 1 and |u(1)| ≤ 1. In the figure below, the level curves of V are
shown for a specific value of the state x, namely x = (1 − 3)T . The
box indicates the control constraints.
Which value of the control signal is computed by the constrained MPC?
How does this compare with the saturated (−1 ≤ u ≤ 1) control signal
from the unconstrained control law? (2 p)
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Solution:

a. The matrices are found by iterating the state equations (see chapter 5
of the Lecture notes) and using the fact that u(2) = u(3) = 0:

Ψ =


CA
CA2

CA3

CA4

 Φ =


CB 0
CAB CB
CA2B CAB
CA3B CA2B


b. Minimizing

V = (Ψx+ ΦU)T (Ψx+ ΦU) = UTΦTΦU + 2xTΨTΦU + xTΨTΨx

gives the unconstrained minimum

U = −(ΦTΦ)−1ΦTΨx ≈
[
−3.11 −0.52
3.08 0.21

]
x

Only the first control signal is used and gives the control law

u =
[
−3.11 −0.52

]
x
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c. The unconstrained control law gives

u =
[
−3.11 −0.52

] [ 1
−3

]
= −1.55,

which after saturation gives u = −1.
However, from the diagram of the level curves, it is seen that the mini-
mum value inside the box is obtained at the upper boundary for u(1) = 1
and approximately u(0) = −0.6. The latter is the control signal deliv-
ered by the constrained MPC.

THE END!
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