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Problem 1.

a. What is the reason that the DMC scheme can be used for stable plants
only? (2 p)

b. It has been demonstrated during the course that the moving horizon
estimate can be computed using the same recursions as used in the
Kalman filter. Explain why the two estimates are, in general, yet dif-
ferent. (2 p)

c. Explain what is meant by recursive feasibility. (2 p)

d. What is meant by a soft constraint? Explain in words and give an
example in terms of a couple of equations. (2 p)

e. What is meant by explicit MPC? What are its pros and cons (one each
is sufficient)? (2 p)

Solution:

a. The state observer used in the DMC scheme is partly (the part corre-
sponding to the original state) open-loop.

b. The reason that the estimates differ is that the recursions for the MHE
have to be initialized at the beginning of the sliding window, i.e. have
to be re-run at every sampling instant, whereas the Kalman filter is
initialized only once.

c. Recursive feasibility is the property that solving the MPC optimization
problem for an initial feasible state results in the next state being feasible
as well. This results in a sequence of feasible (solvable) finite horizon
optimal control problems. All this holds if there are no uncertainties.

d. A soft constraint can be violated if needed, but adds cost to the objective
function. One way to do this is to introduce a slack variable ε according
to

min
U

VN(U) + ρ‖ε‖2

subject to F U +GX ≤ e+ ε

ε ≥ 0
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e. In explicit MPC, the multi-parametric optimization problem is solved
off-line, resulting in a piece-wise affine control law that is stored in
memory. The on-line computation is thereby limited to looking up the
controller parameters corresponding to the current state, and then to
compute the control signal. The advantage is that most of the com-
putations can be done off-line. The disadvantages are that storage re-
quirements can be very large, and that the off-line computations can be
prohibitive.
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Problem 2.
Consider a first order system described by the model

x(k + 1) = 0.5x(k) + u(k), u(k) ≥ 0

where it should be noticed that only non-negative control inputs are allowed.
We want to construct an LQ based MPC for this system based on minimizing
the 1-step ahead cost function

V1(x(0), u(0)) = x2(1) + u2(0),

where as usual ‘current time’ k has been placed at the origin.

a. Determine the cost function V1(x, u) as a function of current state x =
x(0) and control candidate u = u(0). Based on this, determine the
control law resulting from the unconstrained LQ problem. (2 p)

b. Now assume that the control constraint is taken into consideration, i.e.
we would like to minimize V1 under the constraint

u ≥ 0

Determine the control law resulting from the constrained MPC formu-
lation. (2 p)

c. Show that the state converges to zero for the closed-loop system ob-
tained with the constrained MPC. (1 p)

Solution:

a. The cost function is

V1(x, u) = x2(1) + u2(0) = (0.5x+ u)2 + u2 = 2(u+
x

4
)2 +

1

8
x2

From this follows that the unconstrained control law, minimizing V1, is
given by

u = −x
4

b. With the constraint on u, the minimizing control is not any longer
allowed for positive x. However, for positive x, it follows from the
expression

V1(x, u) = 2u2 + xu+
1

4
x2
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that V1(x, u) is minimized by the choice u = 0. The constrained MPC
control law is hence

u(x) =

{
−x/4 x ≤ 0

0 x > 0

c. From (b) it follows that the closed-loop system is described by either of
two equations

x(k + 1) =

{
0.25x(k) x(0) < 0

0.5x(k) x(0) ≤ 0

i.e the system is governed by the open-loop dynamics if the initial state
is negative. In either case, the state converges to zero exponentially and
the closed-loop system is stable.

Problem 3.
Predictions of states and/or outputs are important for MPC. In this problem,
we will investigate how predictions can be constructed from transfer function
or difference equation models including noise terms. Consider the first order
system (where, for simplicity, the control input has been omitted) given by
the difference equation

y(k) + ay(k − 1) = e(k) + ce(k − 1)

where the white noise e has standard deviation σ. Assume that |c| < 1.

a. Determine a state space model for the system.
Hint: Start by identifying the direct term D of the state-space model
(A,B,C,D). (2 p)

b. Determine the steady state Kalman filter for the system, and put it in
transfer function form. Note that in this case, the process noise and the
measurement noise will be correlated. Denoting the cross correlation
S, the time-varying Kalman filter equations are modified slightly; in
prediction form, they are given by (note that B = 0 in our simplified
problem)

x̂(k + 1|k) = Ax̂(k|k − 1) +Bu(k)

+ (AP (k)CT + S)[CP (k)CT +R]−1(y(k)− Cx̂(k|k − 1))

P (k + 1) = AP (k)AT +Q

− (AP (k)CT + S)[CP (k)CT +R]−1(CP (k)AT + S)

(2 p)
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c. Determine an expression for the steady-state, one-step ahead prediction
of the output. (2 p)

Solution:

a. Using the hint, write the system model as

y(k) =
1 + cz−1

1 + az−1
e(k) =

c− a
1 + az−1

e(k − 1) + e(k)

from which we see that D = 1. It seems natural to choose x(k) =
1

1+az−1 e(k − 1), which gives the state space model

x(k + 1) = −ax(k) + e(k)

y(k) = (c− a)x(k) + e(k)

b. In steady state, the P equation for the model above becomes

P = a2P + σ2 −
(
σ2 − aP (c− a)

)2
(c− a)2P + σ2

with the solution P = 0 (found easily by first testing the case c = 0).
The steady state Kalman gain is then L = S/R = 1 and the filter
becomes

x̂(k+1|k) = −ax̂(k|k−1)+1·(y(k)−(c−a)x̂(k|k−1)) = −cx̂(k|k−1)+y(k)

which can be written in transfer function form

x̂(k + 1|k) =
1

1 + cz−1
y(k)

c. Since e(k) is white noise, we have

ŷ(k + 1|k) = (c− a)x̂(k + 1|k) =
c− a

1 + cz−1
y(k)
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Problem 4.
Consider the augmented model[

x
d

]+
=

[
A Bd

0 I

] [
x
d

]
+

[
B
0

]
u

y =
[
C Cd

] [x
d

]
where the constant but unknown disturbance d affects both state and out-
put equations through the matrices Bd and Cd. In this problem, we will
investigate a special case (familiar from Assignment 2) with the following
assumptions:

• C = I (the identity matrix)

• Bd = 0

• Cd is of full column rank

In order to estimate the unknown disturbance, the observability of the aug-
mented system is of interest.

a. Show that the augmented system is always observable if A has no eigen-
value equal to 1. (2 p)

b. Show that the augmented system is not observable if 1 is an eigenvalue
of A and d has as many components as the number of outputs (and
states). (2 p)

Hint: The pair (C,A) is observable if and only if any of the following condition
holds (n is the number of state variables):

• The matrix


C
CA

...
CAn−1

 has full rank n

• The matrix

[
λI − A
C

]
has rank n for all λ ∈ C

Solution:
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a. Suppose the augmented system is not observable, i.e. there is a non-zero
vector [vT1 v

T
2 ]T such that, for some λ,λI − A 0

0 (λ− 1)I
I Cd

[v1
v2

]
= 0

First, assume λ 6= 1. It then follows from the second block row that
v2 = 0. From the third block-row it then follows that v1 = 0. Hence,
we must have λ = 1. Since 1 is not an eigenvalue of A, it follows from
the first block-row that v1 = 0. From the third block-row we then have
Cdv2 = 0, which implies v2 = 0 since Cd has full column rank. We
conclude that the system is observable.

b. When 1 is an eigenvalue of A, there is a non-zero vector v1 such that
(I−A)v1 = 0. Since Cd is now square and invertible (full rank), we can
choose v2 = −C−1d v1. With these choices, the observability test shows
that the augmented system is not observable.

Problem 5.
Consider the quadratic program

minimize f(x) =
1

2
xTQx+ pTx, Q > 0

subject to Ax = b, A has full row rank

a. Determine the Lagrange dual function to this problem. (2 p)

b. Determine the dual optimal solution. (2 p)

c. By combining the results from a) and b), show that the optimal x and ν
can be computed as the solution of a system of linear equations (which
in fact expresses the KKT conditions for the problem). (1 p)

Solution:

a. The Lagrange dual function is given by

q(ν) = inf
x
L(x, ν) = inf

x

1

2
xTQx+ pTx+ νT (Ax− b)

The infimum can be found by differentiating L with respect to x, giving
Qx0 = −(p+ ATν), so that

q(ν) = −1

2
(p+ ATν)TQ−1(p+ ATν)− bTν
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b. The dual optimal solution is determined by maximizing the dual func-
tion w.r.t. ν, which can be done by differentiating q and setting the
derivative equal to zero, giving

−AQ−1(p+ ATν0) = b

and hence
AQ−1ATν0 = −(AQ−1p+ b)

c. Combining the two expressions above for x0 and ν0 gives[
Q AT

A 0

] [
x0

ν0

]
=

[
−p
b

]
which is the system of linear equations defining the optimal solution
(and which forms the KKT conditions).
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