DECO

Discrete Event Control and Optimization

Exam SSY 220, Wednesday, April 15, 14:00-18:00, M, V
Teacher: Martin Fabian, (772) 3716
Time when teacher present: 15:00, 17:00

Solutions and answers should be complete, written in English and be unambiguous and well
motivated. In the case of ambiguously formulated exam tasks, the suggested solution with
possible assumptions must be motivated. The examiner retains the right to accept or decline
the rationality of assumptions and motivations.

In total the exam comprises 25 credits. For the grades 3, 4 and 5, is respectively required 10,
15 and 20 credits.

Solutions will be announced on the course web-page on the first week-day after the exam
date. Exam results are announced through Chalmers’ administrative routines. The corrected
exams are open for review seven work days after the exam, 12:30 — 13:30 at the department.

Aids: None.



Task 1. Compositional Verification and Modular Synthesis

We have a small manufacturing system as shown below. M1, M2 and M3 are machines, and
B is a buffer. The plant can be modeled by the simple automata given to the right below. The
si events (i = 1,2,3) are controllable, while the f and f; events are uncontrollable. Notice that
M1 and M2 output their products in synchrony into B. Thus, this can be regarded as an
assembly operation, which adds a single product to the buffer.
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a) Give a specification for the buffer to hold one work piece, never to over- or underflow,

and to always end up empty. (1p)
b) Use the abstraction-based compositional method to verify whether the system is

nonblocking or not. Be sure to explain in detail the procedure. (2p)
c) Use the abstraction-based compositional method to verify whether the system is

controllable or not. Be sure to explain in detail the procedure. (3p)
d) Using modular synthesis, calculate a supervisor for the non-abstracted system. (2p)

The specification B can look like this:

—”» S1
S3

We can start by abstracting M3, noting that !'f3 is a local uncontrollable event. This
abstraction is valid both for verification and synthesis, and it makes M3 self-loop only so it
can be ignored.

For compositional verification, we can merge states that are connected by local events,
whether those events are uncontrollable or not. Doing this for the M1, M2, and B creates
self-loop only automata with their respective single states marked. Thus, the system is
obviously nonblocking.

For compositional controllability verification, before abstracting it we have to “plantify’” the
specification, and mark all states except the dump state, which looks like this:

Merging the marked states of the plantified B would create a non-deterministic automaton, so
we cannot do that, even though they are connected by the local event s3 (well, we can
actually, but that’s another story). Still, since M1 and M2 are self-loop only, we can easily
determine that the dump state is reachable, and hence the system is not controllable.

Modular synthesis is straightforwardly done by only considering M1, M2 and B. The result
looks like this (the forbidden state can be removed, of course):
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Task 2. Linear Programming

For the LP-problem given below, all constants, a, b, m; and m, are larger than 0, with

mo > mj.

min p =—ax—hy

st xX+y=2m,

X+y<m,
X,y=>0
a) Formulate an LP problem in standard form for the given constraints and objective
function.

b) Assuming that b > a, solve the problem by the Simplex method.

c) What would happen if b <a ? You do not have to solve for that case, just explain.
d) What would happen if m, <m;? Explain.

(1p)
(4p)
(2p)
(1p)
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If m, < m; as we see from the figure above, the constraints would be conflicting and there
would exist no solution.



Task 3. Integer Linear Programming Theory
The Simplex algorithm in tableau form works on a matrix looking like

where A, b, and c are the respective parameter matrix and vectors. Using the tableau to solve
the LP problem will result in the optimal objective function value p negated in the lower right
hand corner.

Explain why this value turns up negated. (3p)

The optimal objective function value turns up negated, since what the tableau expresses is
really the problem formulated as

min p
st Ax-b=0
c'x-p=0

x>0

The core of this formulation can be expressed in matrix form as

Here we now see why the optimal objective function value ends up negated.

Task 4. Discrete Optimization

Above is given a graph, with costs on the edges.

a) Using Dijkstra’s algorithm, find the least cost path through the graph. (2p)
b) Using the A* algorithm, find the least cost path through the graph. (3p)
c) Explain why Dijkstra’s algorithm and A* require all edge costs to be non-negative.  (1p)



In both cases, show on each iteration which node is taken out from and put in to the queue,
and also what the queue looks like. For b) you need to define a good estimate.

The optimal path is A-B-F.
The workings of Dijkstra’s algorithm is shown to the left, below, and A* is to the right.

Dijkstra’s Algorithm A*

A[0,-] B[1,A] C[4,A] AJ0,10,-] B[1,9,A] C[4,10,A]

B[1,A] C[4,A] F[13,B] DI[6,B] B[1,9,A] F[13,0,B]: C[4,10,A]: DI[6,8,B]
C[4,A] D[6,B] F[13,B] E[13,C] F[13,0,B] D[6,8,B]: C[4,10,A]

D[6,B] E[11,D] F[13,B]

E[11,D] F[13,B]

F[13,B]

The first element within the brackets is the current cost of the node, the last element is the
current parent, and the middle element is the estimate.

Note that the given estimates are monotonic and not over-estimating, and this example shows
that the tighter the estimate, the better A* performs. Here it goes straight for the goal, never
diverging from the optimal path (which Dikstra’s algo does).

If edge costs were allowed to be negative, it would not hold that the cost of going from A to B
is less or equal to the cost of going from A to B to C. This would have as consequence that the
optimal solution to a sub-problem would not necessarily be part of the optimal solution to the
global problem. The algorithms rely on this ““dynamic programming’ property. Also, if we
had negative costs, going around indefinitely in a loop would allow arbitrarily good
solutions, the algorithms would not terminate.






