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Task 1. Compositional Verification and Modular Synthesis 

We have a small manufacturing system as shown below. M1, M2 and M3 are machines, and 
B is a buffer. The plant can be modeled by the simple automata given to the right below. The 
si events (i = 1,2,3) are controllable, while the f and f3 events are uncontrollable. Notice that 
M1 and M2 output their products in synchrony into B. Thus, this can be regarded as an 
assembly operation, which adds a single product to the buffer. 

 

M1

M2

B M3

s1

s2

f

f

s3 f3

                

S0 S1s1
!f

S0 S1s2
!f

S0 S1
s3
!f3

M1

M2

M3

 

 

a) Give a specification for the buffer to hold one work piece, never to over- or underflow, 
and to always end up empty.  (1p) 

b) Use the abstraction-based compositional method to verify whether the system is 
nonblocking or not. Be sure to explain in detail the procedure. (2p) 

c) Use the abstraction-based compositional method to verify whether the system is 
controllable or not. Be sure to explain in detail the procedure. (3p) 

d) Using modular synthesis, calculate a supervisor for the non-abstracted system.  (2p) 
The specification B can look like this: 

S0 S1!f
s3  

We can start by abstracting M3, noting that !f3 is a local uncontrollable event. This 
abstraction is valid both for verification and synthesis, and it makes M3 self-loop only so it 
can be ignored. 

For compositional verification, we can merge states that are connected by local events, 
whether those events are uncontrollable or not. Doing this for the M1, M2, and B creates 
self-loop only automata with their respective single states marked. Thus, the system is 
obviously nonblocking. 

For compositional controllability verification, before abstracting it we have to “plantify” the 
specification, and mark all states except the dump state, which looks like this: 

S0 S1!f
s3

dump!f

 
Merging the marked states of the plantified B would create a non-deterministic automaton, so 
we cannot do that, even though they are connected by the local event s3 (well, we can 
actually, but that’s another story). Still, since M1 and M2 are self-loop only, we can easily 
determine that the dump state is reachable, and hence the system is not controllable. 

Modular synthesis is straightforwardly done by only considering M1, M2 and B. The result 
looks like this (the forbidden state can be removed, of course): 
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Task 2. Linear Programming 

For the LP-problem given below, all constants, a, b, m1 and m2 are larger than 0, with  
m2 > m1. 

1

2

min

.

, 0

p ax by

s t x y m

x y m

x y

  
 
 



 

a) Formulate an LP problem in standard form for the given constraints and objective 
function. (1p) 

b) Assuming that b a , solve the problem by the Simplex method. (4p) 
c) What would happen if b a ? You do not have to solve for that case, just explain. (2p) 
d) What would happen if  m2 < m1? Explain. (1p) 
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Task 3. Integer Linear Programming Theory 

The Simplex algorithm in tableau form works on a matrix looking like 

T

A b

c p

 
 
 
 
   

 

where A, b, and c are the respective parameter matrix and vectors. Using the tableau to solve 
the LP problem will result in the optimal objective function value p negated in the lower right 
hand corner. 

Explain why this value turns up negated. (3p) 

The optimal objective function value turns up negated, since what the tableau expresses is 
really the problem formulated as 

min

. 0

0

0

T

p

s t Ax b

c x p

x

 
 
  

The core of this formulation can be expressed in matrix form as  

0

1T

A b x

c p

   
   
       
           

 

   Here we now see why the optimal objective function value ends up negated. 

 

Task 4. Discrete Optimization 
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Above is given a graph, with costs on the edges. 

a) Using Dijkstra’s algorithm, find the least cost path through the graph.  (2p) 

b) Using the A* algorithm, find the least cost path through the graph.  (3p) 

c) Explain why Dijkstra’s algorithm and A* require all edge costs to be non-negative. (1p) 



In both cases, show on each iteration which node is taken out from and put in to the queue, 
and also what the queue looks like. For b) you need to define a good estimate. 

The optimal path is A-B-F. 

The workings of Dijkstra’s algorithm is shown to the left, below, and A* is to the right. 
Dijkstra’s Algorithm A* 

A[0,-] B[1,A]  C[4,A] A[0,10,-] B[1,9,A]  C[4,10,A] 

B[1,A] C[4,A]  F[13,B]  D[6,B] B[1,9,A] F[13,0,B]:  C[4,10,A]:  D[6,8,B] 

C[4,A] D[6,B]  F[13,B]  E[13,C] F[13,0,B] D[6,8,B]:  C[4,10,A] 

D[6,B] E[11,D]  F[13,B]   

E[11,D] F[13,B]   

F[13,B]    

The first element within the brackets is the current cost of the node, the last element is the 
current parent, and the middle element is the estimate.  

Note that the given estimates are monotonic and not over-estimating, and this example shows 
that the tighter the estimate, the better A* performs. Here it goes straight for the goal, never 
diverging from the optimal path (which Dikstra’s algo does). 

If edge costs were allowed to be negative, it would not hold that the cost of going from A to B 
is less or equal to the cost of going from A to B to C. This would have as consequence that the 
optimal solution to a sub-problem would not necessarily be part of the optimal solution to the 
global problem. The algorithms rely on this “dynamic programming” property. Also, if we 
had negative costs, going around indefinitely in a loop would allow arbitrarily good 
solutions, the algorithms would not terminate. 

 




