
DECO 
Discrete Event Control and Optimization 

Exam SSY 220, Wednesday, January 15, 14:00-18:00, M 
Teacher: Martin Fabian, (772) 3716 

Time when teacher present: 15:00, 17:00 

 
Solutions and answers should be complete, written in English and be unambiguous and well 
motivated. In the case of ambiguously formulated exam tasks, the suggested solution with 
possible assumptions must be motivated. The examiner retains the right to accept or decline 
the rationality of assumptions and motivations. 

In total the exam comprises 25 credits. For the grades 3, 4 and 5, is respectively required 10, 
15 and 20 credits. 

Solutions will be announced on the course web-page on the first week-day after the exam 
date. Exam results are announced through Chalmers’ administrative routines. The corrected 
exams are open for review seven work days after the exam, 12:30 – 13:30 at the department. 

 
Aids: None. 



Task 1. Supervisory Control Theory 

Controllability is an important property in the Supervisory Control Theory; the supervisor 
must be controllable with respect to the plant and the uncontrollable events. Below is a 
specification K and a plant component Gi of which there are two (i = 1,2), and the 
uncontrollable events are !b1, and !c2 (note that the plant components are not identical in this 
respect). By a clever trick called plantify we can remove the distinction between plant and 
specification while still being able to synthesize a proper supervisor. 
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a) Plantify the given specification K above. (2p) 

b) Is K controllable with respect to the Gi (i = 1,2) and the uncontrollable events !b1,  
and !c2? Explain. (2p) 

K is not controllable. After a1.!b1.a2, the plant 1 2G G  can do !c2 but the specification does 
not agree. We see this in the plantified version of K below, where !b1.!c2 leads to the dump 
state. 
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Task 2. Abstractions for Compositional Verification 

Emilia was given the task to calculate a supervisor by compositional synthesis. One of the 
automata looked like the one to the left below. Emilia happily abstracted away the local 
uncontrollable event (!u2) into the automaton on the right.  
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a) Is the abstraction valid for controllability verification? Explain.  (3p) 

b) Is the abstraction valid for non-blocking verification? Explain. (3p) 



Answering these questions requires finding some test (plant or specification) that does not 
include the local event (!u2), such that it gives different results with G and Gabs. And different 
results means controllable and uncontrollable, and blocking and non-blocking, respectively. 
Note that to assess validity for non-blocking verification, the test must fail due to blocking, 
not due to uncontrollability, and vice versa. So, different tests are needed to assess the two 
properties.  

The abstraction is not valid for controllability verification. We can see this if we consider a 
test with the language (!u1.c2)*. This is controllable with G but uncontrollable with Gabs.  

The abstraction is also not valid for non-blocking verification. We can see this if we consider 
a test which blocks the controllable event a and has the language (!u1.!u1.c2)*. This is non-
blocking with Gabs but blocking with G. 

Task 3. Linear Programming 

A company can produce two products, A and B. Producing one unit of A takes two hours, 
and one unit of B takes three hours. There are 40 hours of production time available per 
week. However, by paying a fixed cost of €1200, an additional eight hours can be used. If 
more than 10 units of A are produced, at least five units of B must be produced. The profit for 
each unit of A is €200, and for each unit of B €400. 

Formulate a linear programming problem that maximizes the profit for the company. (5p) 

Decision variables: 

xA and xB, number of units produced of the respective products, A and B. 

y1 is 1 if additional time is used, else 0. 

y2 is 1 if more than 10 units of A are produced, else 0. 
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As usual, M is a “large enough” positive constant. It is necessary to multiply y2 with M, since 
y2 is 0-1, while xA - 10 can be much larger than 1. The expression is to say that y2 must be 1 
when xA > 10. 

Task 4. Linear Programming 

We have the following linear programming problem: 
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a) Solve it.  (3p) 



b) If we require the xi to be integer, would the solution in a) also be a solution to this IP-
problem? Motivate. (1p) 

From the constraints we can see that this problem is actually two distinct sub-problems, one 
involving x1 and x3, one involving x2, x4, and x5. These can be solved individually. Of course, 
since x5 increases the objective function, it must be 0. The two problems are then two-
dimensional, and can hence be solved graphically; see the solution below. 

The solution is integer, and we know that if the LP-solution is integer, then it is also the IP-
solution. 

Task 5. Discrete Optimization 
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Above is given a graph, with weights on the edges, and for each node an estimate of the cost 
to reach the goal node F. 

a) Using Dijkstra’s algorithm, find the least cost path through the graph.  (3p) 

b) Using the A* algorithm, find the least cost path through the graph.  (3p) 

In both cases, show on each iteration which node is taken out from and put in to the queue, 
and also what the queue looks like. 

The optimal path is marked by thick lines. It is the same for both algorithms, of course. 
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The workings of Dijkstra’s algorithm is shown to the left, below, and A* is to the right. 
Dijkstra’s Algorithm A* 

A[0,-] B[4,A]  D[5,A]   E[10,A] A[0,10,-] D[5,5,A]  B[4,10,A]  E[10,6,A] 

B[4,A] D[5,A]  C[14,B]  E[8,B]  F[14,B] D[5,5,A] C[8,2,D]  B[4,10,A]  E[7,6,D] 

D[5,A] E[7,D]  F[14,B]  C[8,D] C[8,2,D] F[10,0,C] B[4,10,A]  E[7,6,D] 

E[7,D] C[8,D]  F[14,B] F[10,0,C] E[7,6,D]  B[4,10,A] 

C[8,D] F[10,C]   

F[10,C]    

The first element within the brackets is the current cost of the node, the last element is the 
current parent, and the middle element is the estimate.  

Note that the given estimates are actually the true optimal values from the node to the goal.  
Naturally, such estimates fulfill the requirements we place on estimates, monotonic and not 
over-estimating, and this example also shows that the tighter the estimate, the better A* 
performs. Here it goes straight for the goal, never diverging from the optimal path (which 
Dikstra’s algo does). 





 

 


