
DECO
Discrete Event Control and Optimization

Exam SSY 220, Friday Oct 21, 14:00-18:00, M
Teacher: Martin Fabian, (772) 3716

Time when teacher present: 15:00, 17:00

Solutions and answers should be complete, written in English and be unambiguous and well
motivated. In the case of ambiguously formulated exam tasks, the suggested solution with
possible assumptions must be motivated. The examiner retains the right to accept or decline
the rationality of assumptions and motivations.

In total the exam comprises 25 credits. For the grades 3, 4 and 5, is respectively required 10,
15 and 20 credits.

Solutions will be announced on the course web-page on the first week-day after the exam
date. Exam results are announced through Chalmers’ administrative routines. The corrected
exams are open for review Wednesday Nov 9, 12:30 – 13:30 at the department.

Aids: None.

Task 1. Supervisory Control Theory

A supervisor is a control function for a discrete event system. Typically a supervisor is
automatically generated from a plant describing the possible behavior, and the specification
describing the allowed behavior of the uncontrolled and controlled system, respectively.

a) Explain the notion of controllability, and exemplify what can happen when this property
is not fulfilled. (1p)

b) Explain the notion of non-blocking, and exemplify what can happen when this property is
not fulfilled. (1p)

c) Explain the notion of minimally restrictive, and exemplify what can happen when this
property is not fulfilled. (1p)

d) Explain the notion of non-conflict, and exemplify what can happen when this property is
not fulfilled. (1p)

“Controllability” captures the property that the supervisor must always enable (“be ready
for”) the uncontrollable events that the plant can generate in any state that the supervisor
allows the closed-loop system to reach. If the controllability property is not fulfilled, the
plant can take the closed-loop system outside the allowed behavior described by the
specification.

“Non-blocking” describes the property that the supervisor must be such that it always allows
at least one of the marked states to be reached. The marked states represent significant
“situations”, and so at least one of them should always be reachable, otherwise none of these
significant “situations” would ever be able to arise. A typical significant “situation” is to
reach the initial state.

“Minimally restrictive” captures the property that the supervisor should do its job with as
little intervention as absolutely possible. Without this property, the degenerate “null”
supervisor, which guarantees that nothing bad happens by guaranteeing that nothing at all
happens, would be a solution to the synthesis problem.

“Non-conflict” concerns the property that two supervisors supervising the same system
should have in relation to each other to guarantee that (if both are individually non-blocking)
the closed-loop system of the plant and the two supervisors is non-blocking. If the supervisors
are conflicting, they may block the closed-loop system.

Task 2. Discrete Event Specification

The Chalmers student Emilia was asked to give a specification for system of three users using
a shared resource, to guarantee that the resource is used by only one user at a time. The plant
models consists of three similar automata modeling that each user i ( 1, 2,3i) can request,

get access to, and release the resource, see below left. The request and release events (req_i
and rel_i, respectively) are uncontrollable, the access events (acc_i) are controllable. Emilia
added to the plant models uncontrollable events x_jk (with  , 1, 2,3j k , j k and x_jk =

x_kj), so that _ Uix jk whenever j i or k i . These events were self-looped at the Ui

states, see below right.

Ii

Ri!req_i

Ui

acc_i

!rel_i

Ii

Ri!req_i

Ui

acc_i

!rel_i

!x_jk

Then Emilia added three specifications Sp_jk such that each only consisted of a single
marked state and had a single uncontrollable event in its alphabet, the x_jk event, but no
transitions.

a) Explain in detail why Emilia added those events and gave those specifications. Why
would this guarantee that the resource is used by only one user at a time? (3p)

b) Give an alternative formulation of a specification to guarantee that the resource is used by
only one user at a time, not involving any extra events, and compare that to Emilias
solution. (2p)

Each user model will have two self-looped uc-events at its Ui state. Through synch comp
those self-loops will survive only in the states where two users simultaneously use the shared
resource. Emilias specifications, that always forbid the uncontrollable x_jk events, generates
a controllability problem exactly at those where the x_jk events are self-looped, and hence
the synthesis algorithm will remove those states and all possible uc-paths to them. In this way
we are guaranteed that that the resource is used by only one user at a time.

Emilias spec cleverly promotes modular synthesis; a spec is picked, it has a single uc-event
in common with two (modified) plants which are then picked out for synthesis, and a modular
supervisor is generated.

There are several different ways to specify the same requirement, but all of them require
more work. The obvious way is to pair-wise synchronize the (un-modified) plants and to
manually remove (or forbid) the state where the two users simultaneously use the resource.
Another way is to add three-state specs that pair-wise mutually exclude the acc_i events until
the rel_i event has been seen, see below where this is shown for users 1 and 2.

X

Y

acc_1

Z

acc_2!rel_1

!rel_2

Task 3. Supervisor Synthesis

A small manufacturing system consists of 4 machines with buffers in-between, see below.
Machine M1 feeds buffer B1, which in turn holds parts for both M2 and M3. These
machines, M2 and M3, feed either B2 or B3. Machine M4 takes parts from both B2 and B3.

M3

M2 B2
M1 B1

s1 !f1
s2

!f22

s3
!f33

M4

s4
!f4

B3

!f23

!f32
s4

All devices are modeled as two-state automata, where the buffers (acting as specification)
have their initial state marked, while the machines have both states marked. The capacity of
each buffer is one. The s-events (see above) are controllable while the f-events are un-
controllable.

a) Model the system and the specification, and synthesize a modular supervisor. (4p)

b) Is the modular supervisor non-blocking? Motivate. (1p)

The models of the machines and buffers are rather straightforward. The supervisors are
synthesized from B1||M1, B2||M2||M3, and B3||M2||M3, respectively. This gives the
following supervisors.

S0.S0

S0.S1

s1

S1.S0

!f1

s2
s3

S0.S0.S0

S0.S0.S3

s3

S0.S1.S0

s2!f33

S1.S0.S0

!f32

!f23

!f22

s4

S0.S0.S0

S0.S0.S3

s3

S0.S1.S0

s2!f32

S1.S0.S0

!f33

!f22

!f23

s4

The controlled system is unfortunately blocking. This we can see if we regard the supervisors
for B2||M2||M3 and B3||M2||M3. They agree on, for instance, s3 but then one wants to take
f33 to a marked state whereas the other wants to take f33 to an unmarked state. This is a
classic case of conflict; s3.f33 is a prefix of a marked string in both automata, but it is not a
prefix of a common marked string.

Task 4. Discrete Optimization

Below is a weighted directed graph, where the weights are costs noted on the arcs. The initial
node is A, and there are two alternative goal nodes G and H.

a) Run Dijkstra’s algorithm on the graph to find the goal node with the lowest-cost path

from the initial node. Make sure to at each step denote which node is currently examined
and which nodes are in the list to possibly be examined. (4p)

b) Describe the main difference between Dijkstra’s algorithm and A*. (1p)

Dijksttra’s algo runs on the above graph as

A[0,-]: B[1,A]:

B[1,A]: C[2,B]: D[3,B]:

C[2,B]: D[3,B]: E[3,C]:

D[3,B]: E[3,C]: F[4,D]:

E[3,C]: F[4,D]:

F[4,D]: G[6,F]: H[6,F]:

G[6,F]: H[6,F]:

And the optimal path is thus

G[6,F]: F[4,D]: D[3,B]: B[1,A]: A[0,-]:

Note that also H could be considered the node with least cost, since it has the same cost as G.
Whether G or H is found, depends on the internal storage of the nodes; at F, either G or H
could be picked out to be examined, either choice would be correct.

Dijkstras algo is guided by the cost to a certain node. A* is guided by both the cost of getting
to a node n (g(n)) plus an estimate of getting from n to the goal (h(n)). Dijkstra’s algorithm is
principally the A* algorithm with h(n)=0, that is, it does not use any estimate of the “future”
as guide, it merely looks at the “past”. Naturally, h(n)=0 is an estimate that never over-
estimates the true value, and it guarantees monotonicity.

For both algorithms, the node weights must be non-negative.

Task 5. Linear and Integer Programming Theory

We have looked at Linear Programming (LP) problems, Integer Programming (IP) problems,
and Mixed Integer Linear Programming (MILP) problems.

a) What is the meaning of an LP-relaxation of a MILP or IP problem? Why is it useful? (2p)

b) Describe how the LP-relaxation could be used to solve an IP/MILP problem. Be sure to
describe how we know when the optimal solution has been found. (3p)

c) What is the importance of the A-matrix being totally uni-modular for an IP problem? (1p)

An LP-relaxation of an IP/MILP problem is what we get when we disregard the requirement
that some (or all) variables should take on integer values. This is essentially is a less
constrained problem than the original one, since it has less requirements on the variables,
and hence the solution to the LP_relaxed problem is a bound on the true solution. The
solution to the full problem can never be better than the solution to the relaxed problem.

It is known that if the solution to the relaxed problem happens to satisfy all constraints of the
non-relaxed original problem, then the solution to the relaxed problem is the solution to the
original problem. Thus, we can iteratively use solutions relaxed problems to eventually end
up with a solution to the original problem. We solve the LP-relaxation, and know that this
solution is a bound on the true solution. Then we add constraints to the integer variables to
bound them to integer values, and solve new LP-relaxations. We can do this again and again
until we eventually end up with a solution where all integer variables take on integer values,
and we are done. During this process we know that each relaxation poses a bound on the
solution where the integer variables are really integer, and so we can employ a “branch and
bound” technique to eventually arrive at the true solution. We know that we have found the
true solution when we have a solution that satisfies all requirements, and we have no
unexplored relaxations with a better solution value.

The importance of a totally uni-modular A-matrix comes from the fact that for such a matrix,
every non-null square sub-matrix is integer, and so if also the b vector is integer, all
solutions to such a problem will be integer. Therefore we know that with a totally uni-
modular A-matrix and integer b-vector, the LP-relaxation will give us the solution to the true
IP problem.

