
DECO 
Discrete Event Control and Optimization 

Exam SSY 220, Friday Oct 22, 14:00-18:00, M 
Teacher: Martin Fabian, (772) 3716 

Time when teacher present: 15:00, 16:30 

 
Solutions and answers should be complete, written in English and be unambiguous and well 
motivated. In the case of ambiguously formulated exam tasks, the suggested solution with 
possible assumptions must be motivated. The examiner retains the right to accept or decline 
the rationality of assumptions and motivations. 

In total the exam comprises 25 credits. For the grades 3, 4 and 5, is respectively required 10, 
15 and 20 credits. 

Solutions will be announced on the course web-page on the first week-day after the exam 
date. Exam results are announced through Chalmers’ administrative routines. The corrected 
exams are open for review Friday Nov 05, 12:30 – 13:30 at the department. 

 
Aids: None. 



Task 1. Discrete Optimization 

Regard the following weighted directed graph. The initial node is A, and the final node is F. 
The numbers represent the cost of taking the respective transition from one node to the other. 
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a) Using Dijkstra’s algorithm, find the least cost path through the graph. Show on each 

iteration which node is taken out from and put in to the queue, and also what the queue 
looks like.  (3p) 

b) Using the A* algorithm, find the least cost path through the graph. Show on each iteration 
which node is taken out from and put in to the queue, and also what the queue looks like. 
Note that you need to define a useful heuristic estimate yourself; do not forget to write it 
down in your solution. (3p) 

The optimal path is marked with thick arrows below. This should be the same for both tasks. 
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The workings of Dijkstra’s algorithm is shown to the left, below, and A* is to the right. 
Dijkstra’s Algorithm A* 

A[0,-] B[4,A]  D[5,A]   E[10,A] A[0,10,-] D[5,5,A]  B[4,12,A]  E[10,4,A] 

B[4,A] D[5,A]  C[14,B]  E[8,B]  F[14,B] D[5,5,A] C[8,2,D]  B[4,12,A]  E[7,4,D] 

D[5,A] E[7,D]  F[14,B]  C[8,D] C[8,2,D] F[10,0,C] B[4,12,A]  E[7,4,D] 

E[7,D] C[8,D]  F[14,B] F[10,0,C] E[7,4,D]  B[4,12,A] 

C[8,D] F[10,C]   

F[10,C]    

The first element within the brackets is the current cost of the node, the last element is the 
current parent, and the middle element is the estimate. Here I use as estimate the weighted 
sum of the shortest, in terms of transitions, path to the goal. This is maybe not a reasonable 
estimate, since calculating it requires to know everything, which is what we want to avoid, 
but using the shortest path to the goal as estimate will give A* the same behavior as 
Dijkstra’s algorithm. The used estimate fulfills the requirements we place on estimates, 
monotonic and not over-estimating, to give us the optimal solution, and it also shows that the 
tighter the estimate, the better A* performs.  

Task 2. Linear and Integer Programming 

Regard the following four optimization problems: 
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The *
iz  (for  1, 2,3, 4i ) are the different optimal objective function values. 

a) Determine the relative relationship (in magnitude) between the *
iz  (for  1, 2,3, 4i ).  

Note that it may not be possible to relate all of them to each other.  (2p) 

b) Assume that A is totally uni-modular and that b is integer, then do the same as in a). (2p) 

The least constrained problem is the 2nd one, so that *
2z  has potentially the largest value. The 

most constrained problem is the 4th one, so this has potentially the smallest value. As for the 
1st and 3rd problems, we cannot say much about their relative magnitudes, except that they 
fall in-between the solutions to the 2nd and 4th problems. Thus we have 
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When A is totally uni-modular and b is integer, the solutions to the 1st and 2nd problems are 
integer and so must be the same as the solutions to the 4th and 3rd problems, respectively. 
Thus we have that * * * *

4 1 2 3z z z z   . 

Task 3. Visibility Graph 

Two trains, T1 and T2, share mutual tracks in two sections.  

Starting at time t0 train 1 enters the first shared section at time t11 then exits the first shared 
section to immediately enter the second shared section at time t12. T1 then exits the second 
shared section at time t13 and reaches its destination at time t14. 

Train 2, also starting at time t0, enters the first shared section at time t21 and then enters the 
second shared section at t22 without yet exiting the first shared section (it’s a long train). The 
first shared section is exited at time t23, while the second shared section is exited at time t24. 
T2 reaches its destination at time t25. 

The times for the respective trains are consecutively larger as their indices increase, but we 
do not know much about the relative timings between the trains; we cannot say whether t11 is 
larger or smaller than t21, for instance.  

a) Draw the visibility graph for the system of the two trains. (2p) 

b) Examine the first, lower part of the train system, including the times t0, t11, t12, and t21. 
View the times as coordinates in the visibility graph. Quantify when the path <t0,t0>, 
<t11,t21>, <t12,t21> is better or worse (in terms of time) than the path <t0,t0>,<t12,t21>. (3p) 



 



Task 4. Modular Supervisory Control Theory 

We have two plants P1 and P2, and two supervisors S1 and S2. Let us also regard their 
respective synchronous compositions, 1 2:P P P  and 1 2:S S S . For simplicity we can 

assume that all automata have the same alphabet  . The uncontrollable events are given by 

u   . 

a) Show that when S is controllable with respect to P1 and u , then S is also controllable 

with respect to P and u .  (2p) 

b) Show that when S1 and S2 are both controllable with respect to P and u , then also S is 

controllable with respect to P and u .  (2p) 

Controllability is formally expressed as ( ) ( ) ( )uL S L P L S   when all alphabets are equal. 

Also, when all alphabets are equal, it holds that 1 2 1 2( ) ( ) ( )L S L S L S S . 

For a) we have: 
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For b) we have: 
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Note that the equivalences hold (as given) only for equal alphabets; for non-equal alphabets 
the notation gets a little more intricate, but the results still hold. Thus, there is really no loss 
of generality in assuming equal alphabets. That concatenation with an alphabet distributes 
over intersection (that is,      1 2 1 2( ) ( ) ( ) ( )u u uL S L S L S L S     ) would really need to be 

proven, but we can take this for a fact. Note though that this does not hold if u  were an 

arbitrary language instead of an alphabet (in fact, it holds for languages of equal length 
strings, which is one way to view an alphabet; a language of 1-length strings). 

Task 5. Optimization Problem Modeling 

We have 5 crates Ci that are to be loaded with 3 products Pj that cannot be mixed, so each 
crate can only contain one type of product. For each product, there is a quantity demand dj 
which ideally should be met but need not be, and if it is not then there is a penalty pj 
associated with the deviation from the demand. There is also a maximum allowed deviation 
from the demand, nj. Each crate has a capacity ci which cannot be exceeded. 

The indices above range as : 1 5i    (number of crates) and : 1 3j    (number of products). 
The constants dj, pj, nj, and ci are all real numbers, equal to or larger than 0. 

a) Formulate a problem of minimizing the total penalty cost while loading the crates, each 
with only one type of product (no mixing). (5p) 



b) How would you characterize the problem in terms of different types of optimization 
problems? (1p) 

 



 


