
Discrete Event Systems
Course code: SSY165

Examination 2015-08-25

Time: 8:30-12:30, Location: M-building

Teacher: Bengt Lennartson, phone 3722

The examination includes 25 points, where grade three requires 10 points, grade four
15 points and grade five 20 points.

The result of this examination is announced and inspection of the grading is done on
TuesdaySeptember 8 and WednesdaySeptember 9, 12:30-13:00 at the division.

Allowed aids at the examination:

• Standard mathematical tables such as Beta, see also formulas in the end of this
examination.

• Pocket calculator.

Good luck!
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Show the following set implication by relations based on predicate expressions

A ⊆ B ⇒ (A \D) ∩ C ⊆ B ∩ C∩ ∼D

(3 p)

2

Consider the following Petri net where the enabling of the transitions are dependent
on the logical variablesu andv.

¬u ¬v

u ∧ v

Generate a state space model
x+ = f(x, u, v)

where each state variablexi represents the number of tokens in corresponding place.
The non-linear functionf may include inequality and propositional logical operators.

(3 p)
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3

Show that the following two automata are structurally equivalent. This means that for
all stringss in the langauge generated by the two automata, there is a unique one-
to-one mapping between corresponding states in the automata reached by the same
strings.
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(3 p)

4

Generate a controllable and nonblocking supervisor, by thefix point algorithm pre-
sented in the lecture notes, for the plantP given below. Assume that the eventc is
uncontrollable, while the other events are controllable. The specificationSp = P with
the additional demand thatq8 is a forbidden state andq10 is the only marked state.
Show the resulting automaton after each Backward_Reachability computation.
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(4 p)
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A number of non repeated operations need to be coordinated. Generally, an operation
Ok starts when the eventsk occurs and it is completed when the eventck is fired.
Six operationsO1, . . . Q6 are going to be executed. In principle all operations can
be executed concurrently, except for a couple of restrictions between the operations
that are shown in the figure below. The operation sequences are executed from top to
bottom, but additional preconditions are included above some of the operation names
(Of

k means final state for operationOk). This implies that for instanceO2 in the left se-
quence must wait until bothO1 andO5 have been completed. Furthermore, the middle
sequence specifies thatO2 also must wait untilO3 has been completed.
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a) Formulate a Petri net that specify a coordination betweenthe different operations
such that the given operation restrictions are satisfied.

(2 p)

b) Formulate an alternative modular model, composed of a number of automata synchro-
nized by common events, that specify the same behavior as in a).

(2 p)

c) Show that the final state, where all operations have been completed, is reachable,
by giving one string of events that is included in the language generated by the
Petri net in a) and the automata models in b). A correct solution of a) and b) means
of course that they generate the same language.

(1 p)
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To be able to show that the closed loop systemP ||S is controllable if and only of the
supervisorS is controllable, the following result is useful

LAΣ ∩ LBΣ = (LA ∩ LB)Σ

whereLA andLB are languages, andΣ is a set of events (strings of length one).

a) Show that the language intersection/concatenation expressions above are equal.
According to Beta (Math Handbook)L1L2 = {s1s2|s1 ∈ L1 ∧ s2 ∈ L2}

(2 p)

b) Assume that the alphabetsΣP = ΣS, and show that the closed loop systemP ||S is
controllable with respect to the plant, if and only of the supervisorS is controllable
also with respect to the plant, i.e.

L(P ||S)Σu ∩ L(P ) ⊆ L(P ||S) ⇔ L(S)Σu ∩ L(P ) ⊆ L(S)

The following additional results are then required:

1. L(P ||S) = L(P ) ∩ L(S) whenΣP = ΣS

2. A ∩ B ⊆ C ∩B ⇔ A ∩ B ⊆ C

3. (L(P )Σu ∩ L(P )) ∩ (L(S)Σu ∩ L(P )) ⊆ L(S) ⇔ L(S)Σu ∩ L(P ) ⊆ L(S)

(2 p)

7

A machine has one operating stateq1 and one broken (idle) stateq2. The conditional
transition probabilities are given in the transition probability matrix

P =

[

0.9 0.1
0.4 0.6

]

a) Draw a state transition diagram for this discrete-time Markov chain.
(1 p)

b) Calculate the state probability after one time instant when the initial state isq1 (the
machine is working), i.e. calculatep(t1) whenp(t0) =

[

1 0
]

.
(1 p)

c) Calculate the stationary state probabilityp =
[

p1 p2
]

(note that the sum of the
two probabilities is equal one).

(1 p)
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Tabell 1.1:Equivalence relations.

E1 ¬¬p ⇔ p

E2 ¬ (p ∨ q) ⇔ ¬p ∧ ¬q E3 ¬ (p ∧ q) ⇔ ¬p ∨ ¬ q

E4 p ∨ q ⇔ q ∨ p E5 p ∧ q ⇔ q ∧ p

E6 p ∨ (q ∨ r) ⇔ (p ∨ q) ∨ r E7 p ∧ (q ∧ r) ⇔ (p ∧ q) ∧ r

E8 p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r) E9 p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r)

E10 p ∨ p ⇔ p E11 p ∧ p ⇔ p

E12 p ∨ F ⇔ p E13 p ∧ T ⇔ p

E14 p ∨ T ⇔ T E15 p ∧ F ⇔ F

E16 p ∨ ¬p ⇔ T E17 p ∧ ¬p ⇔ F

E18 p ∨ (p ∧ q) ⇔ p E19 p ∧ (p ∨ q) ⇔ p

E20 p → q ⇔ ¬p ∨ q E21 ¬ (p → q) ⇔ p ∧ ¬ q

Tabell 1.2:Implication relations.

I1 p ∧ q ⇒ p I2 p ∧ q ⇒ q

I3 p ⇒ p ∨ q I4 q ⇒ p ∨ q

I5 ¬p ⇒ p → q I6 q ⇒ p → q

I7 ¬ (p → q) ⇒ p I8 ¬ (p → q) ⇒ ¬ q

A||B =
〈

QA ×QB,ΣA ∪ ΣB, δ, 〈qAi , q
B
i 〉, Q

A
m ×QB

m, (Q
A
x ×QB) ∪ (QA ×QB

x )
〉

δ(〈qA, qB〉, σ) =











δA(qA, σ)× δB(qB, σ) σ ∈ ΣA ∩ ΣB

δA(qA, σ)× {qB} σ ∈ ΣA \ ΣB

{qA} × δB(qB, σ) σ ∈ ΣB \ ΣA


