
Examination

SSY130 Applied Signal Processing

Suggested Solutions

14:00-18:00, January 16, 2019

Instructions

• Responsible teacher: Tomas McKelvey, phone number 8061. Teacher will visit the site of
examination at approximately 14:45 and 16:30.

• Score from the written examination will together with course score determine the final grade
according to the Course PM.

• Your preliminary grade is reported to you via email.

• Exam grading review will be held at 12:00-12:50 on January 31 in room 7430 (Landahlsrum-
met).

Allowed aids at exam:

• L. R̊ade and B. Westergren, Mathematics Handbook (any edition, including the old editions
called Beta or copied sections from it), Formulaires et tables Mathématiques, Physique,
Chimie, or similar.

• Any calculator

• One A4 size single sheet of paper with handwritten notes on both sides.

Note:

• The exam consists of 5 numbered problems.

• The ordering of the problems is arbitrary.

• All solutions should be well motivated and clearly presented in order to render a full score
unless explicit instructions say otherwise. Unclear presentation or adding, for the problem
in question, irrelevant information render a reduction of the score.

• Write solutions to each problem on a separate sheet of paper.

• The maximum score is 52 points.

1



Problems

1. Consider a complex exponential signal x(n) = ej2πf0n/fs with frequency f0 = 1 kHz and
sampling frequency fs = 4 kHz. Assume N samples n = 0, 1, . . . , N − 1 are available for
analysis.

(a) Show that the magnitude of the DTFT calculated from the N available samples is

|X̂(ω)| =

∣∣∣∣∣ sin(N(ω−2πf0)
2fs

)

sin( (ω−2πf0)
2fs

)

∣∣∣∣∣
(5pt)

(b) Sketch the magnitude of X̂(ω) given in (a) from frequency 0 to frequency fs = 4 kHz
for the case when N = 8. Make sure that the frequency locations of the maximum
magnitude and the zero magnitudes are clearly marked. Use a frequency scale in kHz.

(5pt)

Solution:

(a) Start by letting ω0 = 2πf0 and ∆t = 1/fs. Then x(n) = ejω0n∆t. For the DTFT we
get

X̂(ω) =

N−1∑
n=0

ejω0n∆t e−jω∆tn =

N−1∑
n=0

e−j(ω−ω0)∆tn

=
1− e−j(ω−ω0)∆tN

1− e−j(ω−ω0)∆t
= e−j

N−1
2 (ω−ω0)∆t sin(N(ω−ω0)∆t

2 )

sin( (ω−ω0)∆t
2 )

By taking the magnitude and substituting ∆t = 1/fs yields the desired result. We could
also obtain the result by convolving the DTFT of infinte long complex exponential with
the DTFT of the rectangular window function of lenght 8.

(b) The graph of the DTFT in a) for the case N = 8 will have a maximum of 8 for
frequency 1 kHz. The sin-function in the numerator will be zero for f = k 4

8 kHz
for k = 0, 1, 3, 4, 5, 6, 7. Between these zeros we will have side lobes. The function is
periodic with period 4 kHz.
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2. Consider a real valued symmetric FIR low-pass filter with a non-causal impulse response,
i.e. hLP (n) = hLP (−n). The frequency function of the filter is approximately equal to 1 in
the pass-band and close to zero in the stop-band. The passband edge frequency is 0.1fs.
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Two bright Applied signal processing students are discussing ways to transform the low-pass
filter to a high-pass filter. One student suggests to define impulse response of the high-pass
filter as

hHP1
(n) ,

{
−hLP (n) n 6= 0

1− hLP (0) n = 0

while the other student suggests

hHP2(n) , (−1)nhLP (n).

Both students are correct.

(a) Show that hHP1(n) is a high-pass filter. (3pt)

(b) Derive the passband edge frequency for hHP1
(n). (2pt)

(c) Show that hHP2
(n) is a high-pass filter. (3pt)

(d) Derive the passband edge frequency for hHP2
(n). (2pt)

Hint for (c-d): (−1)n = ejπn.

Solution:

(a) The frequency function of a filter is the DTFT of the impulse response. Define hAP (n) =
1 for n = 0 and zero otherwise. Then

HHP1
(ω) = DTFT [hHP1

(n)] = DTFT [hAP (n)− hLP (n)] = 1−HLP (ω)

This shows that HHP1
(ω) is close to zero where HLP (ω) is close to one and HHP1

(ω)
is close to zero where HLP (ω) is close to zero. This imply that HHP1

(ω) is a high-pass
filter.

(b) Since the transition region for the high-pass filter coincide with the transition region
for the low-pass filter the pass-band edge frequency for the high-pass filter is also 0.1fs.

(c) Clearly
hHP2

(n) = (−1)nhLP (n) = ejπnhLP (n).

The filter hHP2
(n) is hence the result from modulation with relative frequency π radians

per sample which is the Nyquist frequency. The frequency response of the high-pass
filter is hence

HHP2
(ω) = HLP (ω − ωs/2)

which clearly is a high-pass filter.

(d) The negative edge frequency at f = −0.1fs for the low pass filter is by the modulation
shifted by fs/2 so the edge frequency of the high-pass filter HHP2(ω) is fs/2− 0.1fs =
0.4fs.

�

3. (a) Consider the signal y(n) defined as

y(n) = x0(n) + x1(n)

where x0(n) and x1(n) are two uncorrelated zero mean stochastic processes with auto-
correlation functions φx0

(n) and φx1
(n) respectively. Derive the autocorrelation func-

tion for y(n). (4pt)
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(b) Generalize the result in (a) by deriving the autocorrelation function for

y(n) =

m−1∑
k=0

αkxk(n)

where xi(n) are zero mean stochastic processes with autocorrelation functions φxi
(n).

All processes xi(k) are mutually uncorrelated. (6pt)

Solution:

(a) From the defintion of autocorrelation we get

φyy(k) = E[y(n)y(n+ k)] = E[(x1(n) + x2(n))(x1(n+ k)x2(n+ k)]

= E[(x1(n)x1(n+ k))] + E[(x2(n)x2(n+ k))] = φx1
(k) + φx2

(k)

where the third equality follows from the uncorrelated properties of x1(n) and x2(n)

(b) With the same arguments we obtain

φyy(k) = E[y(n)y(n+ k)] = E[(

m−1∑
l=0

αlxl(n))(
m−1∑
t=0

αtxt(n+ k))]

= E[

m−1∑
l=0

α2
l xl(n)xl(n+ k)] =

m−1∑
l=0

α2
l φxl

(k)

�

4. Multiple Choice Questions. Select one option per subquestion. No motivation is needed.

(a) A DSP system consists of a sampling unit which samples at a rate of 10 kHz, a processing
unit which filters the signal using an IIR filter and a digital to analog converter (DAC)
which operates in a zero-order hold (ZOH) mode. The input to the system is a single
sinusoidal signal with a frequency of 4 kHz. Which statement below is correct : (2pt)

i. The sample rate is not high enough to ensure that no aliasing occurs during the
sampling process.

ii. The output of the system is composed of infinitely many sinusoidal signals.

iii. Since no aliasing occur during the sampling the output is a single sinusoidal with
the original frequency of 4 kHz.

iv. The IIR filter will only change the amplitude and not the phase of the sampled
sinusoidal signal.

(b) An LMS filter can be described by the equations:

x̂(k) = hTy(k)

e(k) = x(k)− x̂(k)

h = h + 2µy(k)e(k)

where h is a M -length vector with the FIR filter coefficients and y(k) is a vector with
signal samples y(k) and M − 1 past signal samples. Which statement regarding the
step-length µ below is correct? (2pt)

i. If the filter converges, a large step-length gives a faster convergence.

ii. For stability reasons the step-length must be large enough.

iii. It is reasonable to determine the step-length based on the variance of the desired
signal x(n).

iv. A large step-length will give a small residual error variance.

4



(c) The Least-Mean-Square (LMS) algorithm and the Recursive Least-Squares (RLS) al-
gorithm can both be used for adaptive filtering. Which statement below is incorrect:

(2pt)

i. The RLS algorithm has a more advanced step length adjustment and generally
converges faster than LMS.

ii. RLS automatically selects the optimal step length.

iii. LMS is computationally more complex than the RLS algorithm.

iv. RLS with a forgetting factor is suitable when the system is slowly time-varying.

(d) When deriving the Kalman filter random variables with a Normal distribution plays a
key role. Which statement below is incorrect: (3pt)

i. If we multiply a normally distributed random variable with a non-zero constant
the result is a random variable with a normal distribution.

ii. If we add two normally distributed random variables which are un-correlated the
result is a random variable with a normal distribution.

iii. The variance of the sum of two correlated random variables is the sum of the
variances of the individual variables.

iv. The variance of the sum of two uncorrelated random variables is the sum of the
variances of the individual variables.
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(e) Consider the following block diagram:

+ ĥ(n)

z−d

+
s(n) y(n)

x(n)

w(n)

e(n)−x̂(n)

The diagram describes a number of optimal filtering problems depending on the setting
of d, the delay. The optimal filter ĥ(n) is defined as the filter which minimizes the
variance of e(n). Which statement below is incorrect : (3pt)

i. If d = 0 the block diagram describes the filtering case when we want to optimally
recover the signal s(n) based on samples of y(n) up to time index n.

ii. if d < 0 the block diagram describes the smoothing case, i.e. the case when we want
to recover y(n− d) based on samples of y(n) up to time index n.

iii. If d > 0 the block diagram describes the smoothing case, i.e. case when we want to
recover s(n− d) based on samples of y(n) up to time index n.

iv. if d < 0 the block diagram describes the prediction case, i.e. the case when we want
to predict s(n+ d) based on samples of y(n) up to time index n.

Solution:

(a) ii
(b) i
(c) iii
(d) iii
(e) ii

�

5. Monitoring the fetal status during labour is important in modern medical practice. Informa-
tion derived from the fetal ECG (electrocardiogram), i.e. the electrical signature originating
from the activity of the heart of the fetus, is one important modality. The fetal ECG is picked
up by placing electrodes (leads) on the abdomen of the mother and viewing the electrical
activity on a graphing monitor. However, the fetal ECG is quite weak due to the distance
between the fetus’ heart and the surface of the abdomen and is also disturbed by the ECG of
the mother. This complicates the medically relevant interpretation of the fetal ECG signal.
The influence of the maternal ECG can be reduced by separately measuring the ECG of the
mother by placing electrodes on her chest and use the signals from the chest leads to reduce
the influence of the maternal ECG on the fetal ECG measured from the abdominal leads.

(a) Assume only a single lead maternal ECG and a single lead fetal ECG is measured.
Discuss a solution and draw a block diagram illustrating how an adaptive filter can be
employed to suppress the maternal ECG. (5pt)

(b) It is common that several chest leads (maternal signal) and several abdominal leads
(fetus signal+ maternal signal) are available for processing. Assume the signal process-
ing system uses two chest lead signals y1 and y2 to remove the disturbance from one
abdominal lead signal x. Hence we have

e(n) = x(n)− yT1 (n)h1 − yT2 (n)h2

Derive expressions for the optimal filters h∗
1 and h∗

2 which minimize the variance of the
signal e(n). (5pt)

Solution:
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(a) Denote the maternal ECG signal from a chest lead with y(n). This signal can be re-
garded as a measurement of the disturbance source. Denote by x(n) the signal measured
by an abdominal lead. This signal will be composed of the sum of the contribution orig-
inating from the maternal ECG and the fetal ECG. If we use these two signals in the
system modelling setting the impulse response of the estimated filter will be a model of
the signal transfer function between the chest lead and the abdominal lead. Since we
can assume that the maternal and the fetal heartbeats are independent the fetal ECG
signal will not (on average) affect the convergence of the adaptive filter. The filter error
e(n) will upon “convergence” be the improved fetal ECG signal where the maternal
ECG has been suppressed.

(b) Measuring the ECG using two chest leads can improve the possibility to enhance the
fetal ECG since the electric voltage is a geometrically distributed signal and sensing it
at different locations will yield other wave forms.

The optimal filter minimize the variance of the error e(n). At the minimum variance
point the gradient w.r.t. all the filter coefficients are zero. The gradients are given by

d

dh1
E(x(n)− yT1 (n)h1 − yT2 (n)h2)2 = −2Ey1(n)(x(n)− yT1 (n)h1 − yT2 (n)h2)

d

dh2
E(x(n)− yT1 (n)h1 − yT2 (n)h2)2 = −2Ey2(n)(x(n)− yT1 (n)h1 − yT2 (n)h2)

Introducing the notation

h =

[
h1

h2

]
, and y(n) =

[
y1(n)
y2(n)

]
and equating the gradients to zero we obtain the familiar result

E{y(n)yT (n)}h = E{y(n)x(n)}

and the optimal filter is given by

h∗ =
(
E{y(n)yT(n)}

)−1
E{y(n)x(n)}.

If y1(n) and y2(n) are uncorrelated, (Ey1y2 = 0) the solution is simplified to

h1
∗ =

(
E{y1(n)yT1 (n)}

)−1
E{y1(n)x(n)}, h2

∗ =
(
E{y2(n)yT2 (n)}

)−1
E{y2(n)x(n)}

However, in the application considered here we cannot expect the two chest leads to be
uncorrelated since they both sense the maternal ECG.

�

END - Good Luck!
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