
Examination

SSY130 Applied Signal Processing

Suggested Solutions

14:00-18:00, January 10, 2018

Instructions

• Responsible teacher: Tomas McKelvey, phone number 8061. Teacher will visit the site of
examination at approximately 14:45 and 16:30.

• Score from the written examination will together with course score determine the final grade
according to the Course PM.

• Your preliminary grade is reported to you via email.

• Exam grading review will be held at 12:00-12:50 on January 24 in room 7430 (Landahlsrum-
met).

Allowed aids at exam:

• L. R̊ade and B. Westergren, Mathematics Handbook (any edition, including the old editions
called Beta or copied sections from it), Formulaires et tables Mathématiques, Physique,
Chimie, or similar.

• Any calculator

• One A4 size single sheet of paper with handwritten notes on both sides.

Note:

• The exam consists of 4 numbered problems.

• The ordering of the questions is arbitrary.

• All solutions should be well motivated and clearly presented in order to render a full score.
Unclear presentation or adding, for the problem in questing, irrelevant information render a
reduction of the score.

• Write solutions to each problem on a separate sheet of paper.

• The maximum score is 52 points.
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Problems

1. Multiple Choice Questions. Select one option per subquestion. No motivation is needed.

(a) A DSP system consists of a sampling unit which samples at a rate of 10 kHz, a processing
unit which filters the signal using a FIR filter and a digital to analog converter (DAC)
which operates in a zero-order hold (ZOH) mode. The input to the system is a single
sinusoidal signal with a frequency of 4 kHz. Which statement below is incorrect : (2pt)

i. The sample rate is high enough to ensure that no aliasing occur during the sampling
process.

ii. The output of the system is composed of infinitely many sinusoidal signals.

iii. Since no aliasing occur during the sampling the output is a single sinusoidal with
the original frequency of 4 kHz.

iv. The FIR filter will change the amplitude and phase of the sampled sinusoidal signal.

(b) A zero mean stationary white noise process with variance 1 is filtered through a FIR
filter of length 2 with filter coefficients h(0) = 1 and h(1) = 2. The autocorrelation
sequence φyy(k) = E y(n)y(n+ k) of the output y(n) is: (4pt)

i. φyy(0) = 5 φyy(1) = 2

ii. φyy(0) = 2 φyy(1) = 5

iii. φyy(0) = 2 φyy(1) = 3

iv. φyy(0) = 4 φyy(1) = 1

(c) Two real valued stationary stochastic processes x and y has a cross-correlation function
φxy(k) = Ex(n)y(n+ k) and power spectral density Sxy(ω) =

∑∞
n=−∞ φxy(n)e−jωn∆t.

Which statement below is correct : (3pt)

i. φyx(n) has no relation to φx,y(n)

ii. φyx(n) = −φxy(n)

iii. φyx(n) = φxy(−n)

iv. Syx(ω) = Sxy(ω)

(d) A noise free single sinusoidal signal is sampled. The frequency of the signal is less than
half the sampling frequency fs. A total of N samples are available for analysis using
DFT. The frequency estimate is taken as the frequency location where the DFT has its
maximum magnitude. Which statement below is incorrect. (3pt)

i. Using only the N signal samples available the best possible estimate will have a
maximum error of fs/(2N)

ii. By zero padding the sampled signal with Z zeros we will effectively sample the
DTFT of the signal at Z + N points and hence the maximum error will decrease
as Z increases.

iii. Using only a finite number of signal samples the frequency can never be estimated
correctly.

iv. The DFT operation will provide equidistant samples (in frequency) of the DTFT
of the signal.

(e) An LMS filter can be described by the equations:

x̂(k) = hTy(k)

e(k) = x(k)− x̂(k)

h = h + 2µy(k)e(k)

where h is a M -length vector with the FIR filter coefficients and y(k) is a vector with
signal samples y(k) and M−1 past signal samples. Which statement below is incorrect?

(2pt)
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i. A small step-length gives a fast converging filter

ii. For stability reasons the step-length must be small enough.

iii. The step-length should be chosen based on of the variance of the filter input y(k)

iv. For stability reasons the step-length must be a positive number

(f) The Least-Mean-Square (LMS) algorithm and the Recursive Least-Squares (RLS) al-
gorithms can both be used for adaptive filtering. Which statement below is incorrect:

(2pt)

i. The RLS algorithm has a more advanced step length adjustment and generally
converges faster than LMS.

ii. RLS automatically selects the optimal step length.

iii. LMS is computationally more complex than the RLS algorithm.

iv. RLS with a forgetting factor is suitable when the system is slowly time-varying.

Solution:

a iii 2pt
b i 4pt
c iii 3pt
d iii 3pt
e i 2pt
f iii 2pt

�

2. A sampled signal of length N , referred to as a block, is to be processed by an FIR filter of
length M .

(a) Directly solving the convolution sum requires multiplication and addition. How many
multiplications are needed to filter the block of data? (3pt)

(b) Describe a method which uses the FFT to solve the filtering problem. (5pt)

(c) How does the number of multiplications required to solve an FFT scale with the length
of the signal to be transformed? (2pt)

Solution:

(a) Filtering results in an output of length N +M − 1.

y(n) =

M−1∑
k=0

h(k)x(n− k), n = 0, . . . , N +M − 1

The number of non-zero multiplications needed to produce one output sample is M
when M−1 ≤ n ≤ N−1, i.e M(N−M+1). For the two edges a total of 2∗

∑M−1
k=0 k =

M(M − 1) multiplications are needed. And hence MN in total.

(b) Filtering with FFT can be applied. First the length of the FFT is determined (NFFT)
as the number which is a power of 2 such that NFFT >= N +M − 1 (assuming we use
the standard radix-2 method). Zero pad the input and the filter to the FFT length and
calculate the FFT of both signals. Take the product between them and then apply the
inverse FFT to calculate the output of the filter.

(c) In each FFT we need in the order of NFFT log2NFFT plus NFFT multiplications.

�

3. Consider the stochastic processes x(k) and y(x). The optimal Wiener filter h(k) minimizes
the variance of e(n) where

e(n) = x(n)−
M−1∑
k=0

h(k)y(n− k).
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The filter input y(n) and desired signal x(n) are both zero mean and have auto- and cross-
correlation functions

E{y(0)y(n)} = φyy(n) =

{
σ2
y, n = 0

0, n 6= 0
, E{y(0)x(n)} = φyx(n) =


α1, n = 0

α2, n = 1

0, n < 0, n > 1

E{x2(n)} = σ2
x

• Derive an explicit expression for E e2(n) (4pt)

• What is the length of the optimal filter? (2pt)

• Derive an expression for the coefficients of the optimal filter? (2pt)

Solution:

E e2 = σ2
x + h2

0σ
2
y + h1σ

2
y − 2α1h0 − 2α2h1 +

M−1∑
k=2

h2
kσ

2
y

Length is obviously 2 since setting hk = 0 for k > 1 will minimize E e2. Setting gradient of
E e2 w.r.t. h to zero yields

2h0σ
2
y − α1

2h1σ
2
y − α2

⇒
h0 = α1/σ

2
y h1 = α2/σ

2
y

�

4. In this problem we will consider thea case when a measurement setup is influenced by
disturbance originating from the mains power supply system. The sensor signal is sampled
by a DSP system and we want to devise a suitable signal processing method to reduce the
disturbance from the sampled sensor signal. Mathematically we can describe the sampled
sensor signal as

y(n) = s(n) +m(n) (1)

where s(n) is the sampled desired sensor signal and the mains disturbance with a 50 Hz
disturbance frequency, which is what is used in Europe, is given by

m(n) = α cos(2π50n∆t+ ϕ) (2)

where ∆t is the sampling frequency. We assume s(n) is a zero mean stochastic process
independent of m(n).

(a) A very simple approach to mitigating the 50 Hz disturbance is to filter the sampled
signal y(n) with a filter which has frequency response which is zero at +50 Hz and -50
Hz. Ideally, the frequency response should be 1 for all other frequencies to minimize
the distortion on the desired signal s(n). Practically this is not possible so we focus on
placing zeros in the frequency response at +50 Hz and -50 Hz and have unit gain at
the zero frequency. This can be accomplished with a FIR filter with 3 coefficients and
is called a notch filter. Derive an expressions for the 3 filter coefficients such that the
frequency response satisfy H(0) = 1, H(2π50) = 0 and H(−2π50) = 0.
Hint: The frequency response of a FIR filter of length 3 can be written

H(ω) = α(β1 − e−jω∆t)(β2 − e−jω∆t)

(5pt)
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(b) A more clever way would be to use the fact that the frequency (50 Hz) of the mains
disturbance is known. Describe an approach similar to Project 2 to mitigate the mains
disturbance m(n) (i.e. assume the disturbance signal is known, but with incorrect phase
and magnitude). Give your answer as a signal diagram and discuss a suitable length of
the FIR filter. (5pt)

(c) The disturbance signal can instead of (2) alternatively be described as

m(n) = a cos(2π50n∆t) + b sin(2π50n∆t) (3)

Derive the relations between α,ϕ in (2) and a, b in (3). (3pt)

(d) The alternative representation of the mains disturbance given by (3) gives yet another
alternative to remove the disturbance m(n) from the measured signal. If we can esti-
mate a and b from the signal y(n) we can subsequently remove m(n) by subtraction.
The estimation of a and b can be (among other methods) be accomplished by Kalman
filtering where we use the parameters a and b as the states. In this case the measure-
ment equation becomes time varying (but known). Derive the state and measurement
equations suitable for solving the problem using the time varying Kalman filter. (5pt)

Solution:

(a) Let ω0 = 2π50∆t. Selecting β1 = e−jω0 and β2 = β̄1 directly ensure that the frequency
response is zero at ±50 Hz. Since 1 = H(0) = α(β1 − 1)(β2 − 1) = α(2 − 2 cosω0)
we get α = 1

2−2 cosω0
. The frequency response can also be written H(ω) = α(1 −

(β1 + β2)e−jω∆t + e−2jω∆t) = α(1− 2 cosω0e
−jω∆t + e−2jω∆t) which gives the impulse

response coefficients h0 = h2 = α and h1 = −α2 cos(ω0).

(b) If we assume the processing unit also (for power reasons) is also connected to the power
supply we can sample the mains voltage signal and use this as a disturbance source
ms(n). Alternatively we can directly in the processing unit create a 50 Hz sinusoidal
signal and use it as the disturbance source. We then filter the disturbance source
through an FIR filter ĥ to match the amplitude and phase of the disturbance m(n),

i.e. m̂(n) = ĥ(n) ? ms(n). Finally this signal is subtracted from the samples of y(n),
i.e. e(n) = y(n)− m̂(n) is the noise reduced estimate of the desired signal. We use the
LMS technique to tune the FIR filter by sequentially take small negative gradient steps
of the function e2(n) . To remove the sinusoidal signal we need to match the phase and
amplitude of the disturbance m(n). For a linear filter this is given by the complex value
of the frequency function evaluated at the specific frequency 2π50. Since the frequency
response for a FIR filter of length 2 at frequency 2π50 is given by h0 + h1e

−j2π50∆t we
note that the complex value can be selected arbitrary by a proper choice of real valued
coefficients h0 and h1. A minimum length filter is hence 2. Particularly if 1/∆t is large
compered to 50 Hz ill-conditioning will occur when using few filter coefficients. A faster
and more robust performance is then obtained with more coefficients.

(c) Set ω0 = 2π50∆t. Then

m(n) = α cos(ω0n+ ϕ) = Re(αej(ω0n+ϕ) = Re(αejϕejω0n)

= Re(α(cosϕ+ j sinϕ)ejω0n) = α(cosϕ cos(ω0n)− sinϕ sin(ω0n))

and we obtain the identities a = α cosϕ and b = −α sinϕ

(d) Set ω0 = 2π50∆t . We can interpret y(n) = a cos(ω0n) + b sin(ω0n) + s(n) as the
measurement equation in the Kalman filter and hence let a and b be the unknown
constants we want to estimate (or track). Here we treat s(n) as the measurement error.
If we asume a and b as constants (or slowly time varying) it is fair to assume that
a(n+ 1) ≈ a(n) and the same for b(n). With the state x(n) = [a(n), b(n)]T we let the
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state equation be

x(n+ 1) =

[
1 0
0 1

]
︸ ︷︷ ︸

A

x(n) + w(n)

y(n) =
[
cos(ω0n) sin(ω0n)

]︸ ︷︷ ︸
Cn

x(n) + s(n)

(4)

where w(n) and s(n) corresponds to the state and measurements noise respectively.
This model makes sence as long as s(n) is zero mean and independent from m(n). The
model also implicitly assumes that s(n) is approximately a white noise signal, i.e. the
power spectral density is approximately constant over frequencies.

�

END - Good Luck!
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