
Suggested Solutions to Examination

SSY130 Applied Signal Processing

14:00-18:00, December 20, 2012

Problems

1. A sampled signal is known to contain 3 real valued sinusoidal signals. Two of the signals
have equal amplitude and are large while the third signal has an amplitude which is 5 times
smaller. The signal is also contaminated with white noise. Figure 1 shows the magnitude of
the DFT of the zero padded sampled signal with a total length of 100 samples. The locations
of the 5 largest peaks are indicated in the graph. The location is given as the value of the
DFT index k.

(a) Assume all sinusoidal signals have a frequency less than half the sampling frequency.
Give an estimate of the relative frequencies (i.e. relative to the sampling frequency) of
the 3 sinusoidal signals. (4pt)

(b) Explain why the magnitude of the DFT have more than 3 peaks? (2pt)

Solution:
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Figure 1: Magnitude of DFT.
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Figure 2: Block diagram of parallell and serial filter connections.

(a) Since all signals are real valued and have frequencies below the Nyquist frequency the
peak locations below relative frequency 0.5 will give a good estimate of the freqency.
Since two signals are larger than the third we expect to see two dominant peaks and
one peak which is 5 times lower then the dominant ones. Peaks at locations k = 4,
11 and 31 är then suitable candidates. The relative frequencies are given as the index
dividet with the number of signal samples. Estimated frequencies are then 4/100=0.04,
11/100=0.11 and 31/100=0.31.

(b) Since the signal is real valued the DFT will also have three peaks corresponding to
the negative frequencies. In the graph these are located above the Nyquist frequencies.
The other peaks are the results from the sidelobes of the rectangular window and the
noise. Clearly if the level of the third sinusoid would be even lower it would be difficult
to make a correct estimation from the graph.

2. Consider the block diagrams in Figure 2. The blocks marked System 1 and Systm 2 are FIR
filters. System 1 and System 2 have the impulse responses

h1(k) =



1, k = 0

2, k = 1

3, k = 2

4, k = 3

0, otherwise

h2(k) =


1, k = 0

2, k = 1

4, k = 2

0, otherwise.

(a) Derive the impulse response of the equivalent filter for the upper blockdiagram in Fig-
ure 2, i.e. the filter which satisfy y(n) = h(n) ∗ x(n) (3pt)

(b) Derive the impulse response of the equivalent filter for the lower filter in Figure 2, i.e.
the filter which satisfy y(n) = h(n) ∗ x(n) (3pt)

(c) Derive the impulse response of the equivalent filter for the lower filter in Figure 2, i.e.
the filter which satisfy y(n) = h(n)∗x(n) when the blocks System 1 and System 2 have
changed places. (3pt)

Solution:

(a) For the upper filter we obtainH(z) =
∑3
k=0 h1(k)z−k+

∑2
k=0 h2(k)z−k =

∑3
k=0(h1(k)+

h2(k))z−k, where we set h2(3) = 0 this yields the impulse response {1 + 1, 2 + 2, 3 +
4, 4 + 0} = {2, 5, 7, 4}.

(b) The equivalent filter for the lower diagram is a filter with an impulse response which is
the convolution of the impulse responses of filter H1 and H2 respectively.

H(z) =

4+3−2∑
k=0

(

3∑
n=0

h1(n)h2(k − n))z−k
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and we obtain
h(0) = 1× 1 = 1

h(1) = 1× 2 + 2× 1 = 4

h(2) = 1× 4 + 2× 2 + 3× 1 = 11

h(3) = 2× 4 + 3× 2 + 4× 1 = 18

h(4) = 3× 4 + 4× 2 = 20

h(5) = 4× 4 = 16

(c) Since convolution is commutative (i.e. the order of the operations does not change the
result) the result is identical as in (2b).

3. An audio signal is received by a microphone, sampled and stored by a DSP system. The
signal has bandpass character and contain power only between 8 kHz and 8.4 kHz. Suggest
a bandpass sampling solution which

• prevents aliasing

• use as low sampling frequency as possible to minimize the memory requirements for
signal storage. Your answer should include the sample frequency of the processing
system. (7pt)

Solution: The bandwidth of 400 Hz suggest a sample rate of minimum 800 Hz if we do
not get aliasing problems due to the position of the frequency band. We now check that 800
Hz will not lead to aliasing. Sampling of the raw signal with FT Xc(ω) will yield a sampled
signal with the DTFT

X(2πf) = fs

∞∑
k=−∞

Xc(2πf + k2πfs) (1)

Xc(2πf) is non-zero for the segments f = [−8.4,−8] kHz and [8, 8.4] kHz. For f = 0 to
400 Hz only one term in (1) (k = 10) is non-zero and we obtain X(2πf) = 800Xc(2πf +
10 × 2π800). For f = 400 to 800 Hz the only non-zero term in (1) is the corresponding
negative part (k = −11) and we obtain X(2πf) = 800Xc(2πf − 11 × 2π800). Hence, we
have established that aliasing does not occur for the sample frequency 800 Hz.

4. Monitoring the fetal status during labour is important in modern medical practice. Informa-
tion derived from the fetal ECG (electrocardiogram), i.e. the electrical signature originating
from the activity of the heart of the fetus, is one important modality. The fetal ECG is picked
up by placing electrodes (leads) on the abdomen of the mother and viewing the electrical
activity on a graphing monitor. However, the fetal ECG is quite weak and is also seriously
disturbed by the ECG of the mother. This complicates the medically relevant interpretation
of the fetal ECG signal. The influence of the maternal ECG can be reduced by separately
measure the ECG of the mother by placing electrodes on her chest and use the signals from
the chest leads to reduce the influence of the maternal ECG on the fetal ECG measured
from the abdominal leads.

(a) Motivate why an adaptive filter solution as compared to a fixed filter solution could be
useful to solve the maternal ECG suppression problem. (3pt)

(b) Assume only a single lead maternal ECG and a single lead fetal ECG is measured.
Discuss a solution and draw a block diagram illustrating how an adaptive filter can be
employed to suppress the maternal ECG. (5pt)

(c) It is common that several chest leads (maternal signal) and several abdominal leads
(fetus signal+ maternal signal) are available for processing. Assume the signal process-
ing system uses two chest lead signals y1 and y2 to remove the disturbance from an
abdominal lead signal x. Hence we have

e(n) = x(n)− yT1 (n)h1 − yT2 (n)h2
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Derive expressions for the optimal filters h∗1 and h∗2 which minimize the variance of the
signal e(n). (5pt)

(d) Give example of a pseudo-program which implement an LMS adaptive filter solution
based on the results in problem (4c) (4pt)

Solution:

(a) Clearly the maternal ECG is much stronger than the fetal ECG so we can assume the
chest ECG leads will only pick upp the maternal ECG. At the abdominal leads we
measure the sum of the chest EEG filtered through some unknown filter and the fetal
ECG. The properties of the filter will most likely vary with the induvidual as well as
the exact location of the leads on the body. Hence in order to subtract the maternal
ECG from the fetal ECG the filter must be estimated for each measurment situation
and also adaptively follow any changes in the signal transmission path. An adaptive
solution is hence a viable solution.

(b) Denote the maternal ECG signal from a chest lead with y(n). This signal can be re-
garded as a measurement of the disturbance source. Denote by x(n) the signal measured
by an abdominal lead. This signal will be composed of the sum of the contribution orig-
inating from the maternal ECG and the fetal ECG. If we use these two signals in the
system modelling setting the impulse response of the estimated filter will be a model of
the signal transfer function between the chest lead and the abdominal lead. Since we
can assume that the maternal and the fetal heartbeats are independent the fetal ECG
signal will not (on average) affect the convergence of the adaptive filter. The filter error
e(n) will upon “convergence” be the improved fetal ECG signal where the maternal
ECG has been suppressed.

(c) Measuring the ECG using two chest leads can improve the possibility to enhance the
fetal ECG since the electric voltage is a geometrically distributed signal and sensing it
at different locations will yield other wave forms.

The optimal filter minimize the variance of the error e(n). At the minimum variance
point the gradient w.r.t. all the filter coefficients are zero. The gradients are given by

d

dh1
E(x(n)− yT1 (n)h1 − yT2 (n)h2)2 = −2Ey1(n)(x(n)− yT1 (n)h1 − yT2 (n)h2)

d

dh2
E(x(n)− yT1 (n)h1 − yT2 (n)h2)2 = −2Ey2(n)(x(n)− yT1 (n)h1 − yT2 (n)h2)

Introducing the notation

h =

[
h1

h2

]
, and y(n) =

[
y1(n)
y2(n)

]
and equating the gradients to zero we obtain the familiar result

E{y(n)yT (n)}h = E{y(n)x(n)}

and the optimal filter is given by

h∗ =
(
E{y(n)yT(n)}

)−1
E{y(n)x(n)}.

If y1(n) and y2(n) are uncorrelated, (Ey1y2 = 0) the solution is simplified to

h1
∗ =

(
E{y1(n)yT1 (n)}

)−1
E{y1(n)x(n)}, h2

∗ =
(
E{y2(n)yT2 (n)}

)−1
E{y2(n)x(n)}

However, in the application considered here we cannot expect the two chest leads to be
uncorrelated since they both sense the maternal ECG.
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(d) Since the optimal solution has the same structure for two channels of the signal y(n) the
LMS algorithm can be extended in a straight forward fashion where we approximate
the negative gradient w.r.t. hi with the product yi(n)e(n). After calculating the error
e(n), each of the filters are updated according to the approximate negative gradient
direction. A Matlab code can be formulated as

for k=Nh:1000-Nh,

e(k) = x(k) - h1’*y1(k-Nh+1:k) - h2’*y2(k-Nh+1:k) ;

h1 = h1 + mu*y1(k-Nh+1:k)*e(k);

h2 = h2 + mu*y2(k-Nh+1:k)*e(k);

end

where Nh is the length of the two FIR filters.

5. In multi-rate processing decimation and interpolation functions plays a key role. Consider
an interpolation stage with a rate change factor of L which can be factorized into I integer
factors , i.e., L = L1L2 . . . LI . Discuss possible advantages and disadvantages with imple-
menting the interpolation function as a cascaded version of I interpolation stages including I
filters and I up-sampling units. Things to consider are for example filter lengths, necessary
storage for filter coefficients, computational complexity (multiplications per second), etc.
(5pt)

Solution: Consider first a single stage interpolator design with an factor L up-sampling
unit followed by a low pass filter with cut off frequency at fs

2L . Assume the required filter
length is N to meet transition region and stop-band attenuation specifications. If the inter-
polator instead is designed using a cascade of two interpolators the LP-filtering requirements
will be divided between the LP-filters in the two stages. Assume the filter lengths are N1 and
N2 in the cascaded stages respectively. The number of multiplications needed per output
sample of the complete interpolator is N for the one stage interpolator and N1/2 + N2 for
the two stage interpolator. We can argue that if N1 + N2 = N we have the possibility to
obtain this. Further assume N1 = N2 to balance the computations. Then the number of
multiplications per output sample will be 3N/4 for the cascaded solution compared to N for
the single stage solution. A reduction of 25% is thus achieved.

Furthermore, the adverse effects of using finite word lengths are less pronounced when using
a short filter as compared to a long filter which also is in favor of a cascaded solution.

Finally, if Li = Lj for all i, j, it is possible to use the same filter coefficients (i.e. the same
LP-filter) in all stages. Hence, only one (shorter) impulse response is required to be stored
in memory.

6. This problem concern using DFT/FFT to calculate the result of convolution. Assume x(n)
is a signal and h(n) is a signal (e.g. the impulse response of a filter) and we want to derive
the output y(n) from convolution

y(n) =

M−1∑
k=0

h(k)x(n− k)

for all values of n. Explain how the radix-2 FFT can be used to achieve this for the following
situations

(a) when x(n) is a signal of finite length N and h(n) is a signal of finite length M . (4p)

(b) when x(n) is a periodic signal with period P = 2L for some positive integer L and h(n)
is a signal of finite length M ≤ P . (4p)
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Solution

(a) The linear convolution will yield an output y(n) which is zero for n < 0 and n ≥ Ny =
N +M − 1. The output is of length Ny and is zero otherwise. From DTFT theory we
now that convolution is equivalent with Y (ω) = H(ω)X(ω) for all values of ω. Recall
that DFT and DTFT are related for finite signals as Y (ωk) = Y (k) where Y (k) is
the DFT of length Ny and ωk = 2πk/Nh. We also know that given Y (k) the inverse
DFT will yield y(n). Hence we need to calculate the product of H(ω) and X(ω) at the
frequencies ωk = 2πk

Ny
for k = 0, . . . , Ny − 1. Since both N and M are less than Ny and

both signals are zero outside their respective interval we can zero pad both signals to
obtain the length Ny and then calculate the DFT to obtain the desired product. In
Matlab this would look like

>> N = length(x);

>> M = length(h);

>> Ny = N+M-1;

>> X = fft(x,Ny);

>> H = fft(h,Ny);

>> Y = H.*X;

>> y = ifft(Y);

To make this execute fast with the Radix-2 FFT algorithm, Ny should be selected to
be the nearest power of 2 that is larger or equal to N +M − 1.

(b) Since the input is periodic the output will also be a periodic signal with period P .
From signals and systems theory we can thus express this signal using the Fourier
series approach and we have:

x(n) =
1

P

P−1∑
k=0

X(k)ej
2πkn
P , n = 0,±1,±2, . . . (2)

where X(k) is the DFT of one period of the input x(n), i.e. for n = 0, . . . , P − 1.
Filtering this signal through the filter with frequency function H(ω) consequently yields
the output

y(n) =
1

P

P−1∑
k=0

H(ωk)X(k)ej
2πkn
P , n = 0,±1,±2, . . . (3)

where ωk = 2πk/P . The complex values H(ωk) is obtained by calculating the DFT of
the impulse response zero-padded to a length P . In Matlab this can be formulated as
(for the case when M ≤ P :

>> P = length(x); % X assumed P-periodic

>> X = fft(x,P);

>> H = fft(h,P);

>> Y = X.*H; % Circular convolution

>> y = ifft(Y);

Since, by assumption, P = 2L and L integer, the Radix-2 FFT algorithm can be used.

END - Good Luck!
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