
Examination

SSY130 Applied Signal Processing

14:00-18:00, December 15, 2009

Instructions

• Responsible teacher: Ingemar Andersson, ph 1784. Teacher will visit the site of examination
at 14:45 and 16:00.

• Score from the written examination will together with course score determine the final grade
according to the Course PM.

• Solutions are published on the course home-page latest 12 noon December 21.

• Your preliminary grade is reported to you via email.

• Exam grading review will be held in the “Blue Room” on level 6 at 12:30-13:00 on January
20, 2010.

Allowed aids at exam:

• L. R̊ade and B. Westergren, Mathematics Handbook (any edition, including the old editions
called Beta).

• Any calculator

• One a4 size single page with written notes

Other important issues:

• The ordering of the questions is arbitrary.

• All solutions should be well motivated and clearly presented in order to render a full score.
Unclear presentation or adding, for the problem in questing, irrelevant information render a
reduction of the score.

• The maximum score is 52 points.

1



Problems

1. A signal consists of two sinusoidal components with frequencies, f1 and f2. It is known that
1 < f1 < 2 [Hz] and 7 < f2 < 8 [Hz]. The signal is sampled at the rate 10 Hz, without using
any anti-aliasing filter. A 64-point FFT is computed from the digital signal, and based on
this the periodogram is formed. The result is shown in the figure below.
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Based on the plot, determine (if possible) approximate values of f1 and f2 (in Hz). (4p)

2. A lowpass filter with passband edge frequency fp = 200 Hz, and stopband edge frequency
fs = 210 Hz is desired (from x(n) to y(n)). The sampling rate is 44.1 kHz for the input signal
x(n). To simplify the implementation, a decimation of a factor of 20 is proposed, according
to the figure below:

y(n)x(n)
F(z) 20 G(z)

Determine suitable specifications for the “anti-aliasing” filter F (z)! Only the edge frequencies
fp and fs are required for the filter F (z). (3p)

3. An engineer is monitoring a slowly varying physical value by sampling it. He notices a large
variation between consecutive samples and tries to remove the variation by caluclating a
running average

x̄(n) =
1

N

n−N+1∑
l=n

x(l).

where x(n) is the sampled signal and x̄(n) is the running average. To test how the running
averaging works he uses a sinusodal signal as a test input and records the magnitude of the
running average. The magnitude as a function of the frequency of the input signal is shown
in Figure 1. The unit on the frequency axis is normalized with respect to the sampling
frequency.
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Figure 1: Magnitude of running average signal as a function of frequency.

(a) What is the length N of the averaging operation. (5pt)

(b) Suggest a length N and sampling frequency such that a 50 Hz disurbance is completely
cancelled by the averaging operation. Is the solution unique? What characterizes a
valid solution? (5pt)

4. An LMS adaptive filter with a FIR structure of length 5 is used for a system modelling
application, i.e. where y(n) is the input to the unknown system and x(n) is output of the
system. The algorithm is tested on the same unknown system with four different input
signals.

(1) y(n) = sin(ω0n)

(2) y(n) = sin(2ω0n)

(3) y(n) = Ae(n)

(4) y(n) = 2Ae(n)

where e(n) is a zero mean, independen over time, stochastic process and ω0 = 2π/10. In all
cases an identical constant step length µ was used. In Figure 2 the evolution over time of
the estimated filter coefficents are shown for the four cases. In Figure 3 the magnitude of
the frequency response is shown for the filters defined by the final values of the estimated
coefficients. For each of the input signals explain which of the subplots in Figure 2 and which
of the transfer functions in Figure fig:3 corresponds to the specific input signal y(n). (10pt)

5. A canonical form implementation of a second order IIR filter can be described with the
following three equations

s1(n+ 1) = x(n) − a1s1(n) − a2s2(n)

s2(n+ 1) = s1(n)

y(n) = b0x(n) + (b1 − b0a1)s1(n) + (b2 − b0a2)s2(n)

The ”standard” form implementation of a second order IIR filter is

y(n) = −a1y(n− 1) − a2y(n− 2) + b0x(n) + b1x(n− 1) + b2x(n− 2)
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(c) Case C
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(d) Case D

Figure 2: Filter coefficient evolution over time
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Figure 3: Magnitude of transfer function of the final filter for the four cases.

(a) Show that the two forms are identical from an input to output perspective. (Hint: Use
the properties of the Fourier transform to elliminate the state-variables s1 and s2) (7pt)

(b) What benefit from an implementation perspective does the canonical form have as
compared to the “standard form”. (3pt)
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6. The goal of this problem is to equalize a communication channel using a FIR Wiener filter.
Assume the desired signal x(n) is described as

x(n) − 0.8x(n− 1) = e(n)

where e(n) is zero-mean white noise with variance σ2
e = 1. The measured signal y(n) is given

by
y(n) = x(n) − 0.5x(n− 1) + v(n)

where v(n) is a zero-mean white noise with variance σ2
v = 0.1. Determine a filter

x̂(n) = w0y(n) + w1y(n− 1)

such that E
[
(x(n) − x̂(n))

2
]

is minimized! (10p)

7. Assume a stochastic process is formed by filtering white noise through a causal FIR filter of
length N with impulse response h(k). That is

y(n) =

N−1∑
k=0

h(k)e(n− k)

where E[e(n)] = 0 and E[e(n)e(m)] = σ2 if n = m otherwise 0. Derive the following
quantities:

(a) The expected value of the output E[y(n)] (1pt)

(b) The power spectrum of the output Syy(ω) (4pt)

END

Good Luck!
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Suggested solutions to examination

SSY130 Applied Signal Processing

14:00-18:00, December 15, 2009

Solutions

1. The sampling leads to folding of the signal component with frequency f2. The location of
the folded frequency will then be between 10− 8 = 2 and 10− 7 = 3 [Hz]. The two leftmost
peaks are at indices 10 and 15 which then imply the frequency f1 = 10/64 ∗ 10 = 1.6 [Hz]
and frequency 15/64 ∗ 10 = 2.3 [Hz]. Hence the second peak is the folded frequency and
consequently f2 = 10− 2.3 = 7.7 [Hz].

2. The key purpose of F (z) is to mitigate aliasing distortion in the frequency band 0-210
Hz due to the downsampling operation. A low pass filter F (z) with stop band frequency
at 44100/20 − 210 = 1995 would then provide high attenuation of the aliasing distortion
occuring between 0− 210 Hz during the downsampling stage. Left is to define the passband
edge frequency which we can set as low as 200 Hz to obatain as large transition region as
possible (for low complexity filter design).

3. (a) The filter is a FIR filter with N coefficients. The frequency function of an averaging
filter of length N is

|H(ω)| =

∣∣∣∣∣1/N
N−1∑
k=0

ejωk

∣∣∣∣∣ =
∣∣∣∣ 1− ejωN

N(1− ejω)

∣∣∣∣ =
sin(ωN/2)
N sin(ω/2)

First zero thus appear when ωN/2 = π which imply fN = 1. Since first zero is at
f = 0.05 we obtain N = 20.

(b) Clearly we have zeros when fN = k and integers k = 1, 2, . . . ,floor(N/2). Hence all
solutions are given by 50N/fs = k where fs is the sampling frequency in [Hz].

4. Signals (3) and (4) are white noise with different amplitudes. White noise have a full rank
autocorrelation matrix and the filter should converge to the vicinity of the true system
paramters. Hence, diagrams A and C are the correct diagrams since they have the same
converegene points. Since (4) has higher amplitude than (3) diagram C belongs to signal
(4) and (3) to diagram A. In the transfer function diagram (3) and (4) belong to graph I
and II (basically the same). Signals (1) and (2) only yields excitation at a single frequency
and only one point in the transfer function will be correctly estimated. Hence, signal (1)
belong to graph III and signal (2) belong to graph IV. The magnitude of the sum of the
filter coefficents is the DC gain of a filter and consequently signal (1) and diagram D belong
and signal (2) and diagram B. In summary we have

(1) - D - III
(2) - B - IV

(3) - A - I & II
(4) - C - I & II
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5. (a) Use the notion that x(n+ 1) = zx(n). Hence

zs1(n) = x(n)− a1s1(n)− a2s2(n)
zs2(n) = s1(n)
y(n) = b0x(n) + (b1 − b0a1)s1(n) + (b2 − b0a2)s2(n)

Elimination of s1 yields

z2s2(n) = x(n)− a1zs2(n)− a2s2(n)
⇒

s2(n) =
x(n)

z2 + a1z + a2

⇒
y(n) = b0x(n) + (b1 − b0a1)zs2(n) + (b2 − b0a2)s2(n)
⇒

(z2 + a1z + a2)y(n) = (b0z2 + b1z + b2)x(n)

which is the desired result.

(b) The canonical form has the implementatin advantage that only two memory registers
are required to implememnt an IIR filter of order 2.

6. Multiplying the equation for x(n) with x(n − 1) and taking expectation yields φxx(1) =
0.8φxx(0) and similarly using x(n − 2) yields φxx(2) = 0.8φxx(1). The variance is obtained
by squaring the defining equation which yeilds φxx(0) = 1/(1− 0.82) = 2.78.

Crosscorrelation calculations yield φyx(0) = φxx(0) − 0.5φxx(1) = 0.6φxx(0) and φyx(1) =
φxx(1)− 0.5φxx(2) = 0.48φxx(0).

Finally the autocorrelation function for y(n) are φyy(0) = 0.45φxx(0) + 0.1 and φyy(1) =
0.18φxx(0).

Defining wT = [w0 w1 ] and y(n)T = [ y(n) y(n−1) ] The variance of the prediction error is

E(x(n)− x̂(n))2 = E(x(n)−wTy(n)))2 = φxx(0)− 2wTΦyx + wTΦyyw

where

Φyy = E
[

y(n)
y(n− 1)

] [
y(n) y(n− 1)

]
and Φyx = E

[
y(n)

y(n− 1)

]
x(n)

The stationary point of the variance expression is obtained by differentiation with respect
to w and equating to zero.

−2Φyx + 2Φyyw = 0

The variance optimal Wiener filter is given by[
w0

w1

]
= Φ−1

yy Φyx =
[
0.45 + 0.1/2.78 0.18

0.18 0.45 + 0.1/2.78

]−1 [ 0.6
0.48

]
=
[
1.01
0.61

]
7. (a)

E[y(n)] = E[
N−1∑
k=0

h(k)e(n− k)] =
N−1∑
k=0

h(k) E[e(n− k)] = 0

(b) The spectrum is defined as

Syy =
∞∑

τ=−∞
φyy(τ)e−jωτ
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i.e., the DTFT of φyy(τ) where

φyy(τ) = E[y(n)y(n+τ)] =
∑
k

∑
n

h(k)h(m) E[e(n−k)e(n+τ−m)] = σ2
∑
m

h(m−τ)h(m)

We recognize that the right hand above is h convolved with the time reversed h. Hence
the DTFT of φyy(τ) is then the product of the DTFT of h and the DTFT of the time
reversed h, i.e.,

Syy(ω) = σ2H(ω)H(ω)∗ = σ2|H(ω)|2

END
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