
Examination with solution suggestions

SSY130 Applied Signal Processing

Jan 8, 2008

Rules

Allowed aids at exam:

• L. R̊ade and B. Westergren, Mathematics Handbook (any edition, includ-
ing the old editions called Beta).

• Any calculator

• One a4 size single page with written notes

The maximum score is 52 points. Correct solutions should be well motivated
to render a full score.

Problems

1. In Figure 1 you find 6 graphs. The 3 left graphs are the time evolution of
the filtering error signal and the 3 right graphs correspond to the filter co-
efficient evolution over time. Below you find the filter updating equations
for three different adaptive filtering algorithms. Which of the error signal
graphs and the filter coefficient graphs correspond to which algorithm re-
spectively? Motivate your choices carefully. What are the names of each
of the algorithms. (10 pt)

A1) Ri = 1000*eye(10);

alpha=1;

for k=Nh:1000-Nh,

e(k) = d(k) - hx(:,k)’*x(k-Nh+1:k);

K = Ri*x(k-Nh+1:k);

Ri = (Ri - K*K’/(alpha + x(k-Nh+1:k)’*K))/alpha;

hx(:,k+1) = hx(:,k) + Ri*x(k-Nh+1:k)*e(k);

end

A2) Ri = 0.5e-2;

for k=Nh:1000-Nh,

e(k) = d(k) - hx(:,k)’*x(k-Nh+1:k);

hx(:,k+1) = hx(:,k) + Ri*x(k-Nh+1:k)*e(k);

end
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Figure 1: Graphs for adaptive filtering problem. Left column error. Right
column coefficients.

A3) Ri = 1000*eye(10);

alpha=0.8;

for k=Nh:1000-Nh,

e(k) = d(k) - hx(:,k)’*x(k-Nh+1:k);

K = Ri*x(k-Nh+1:k);

Ri = (Ri - K*K’/(alpha + x(k-Nh+1:k)’*K))/alpha;

hx(:,k+1) = hx(:,k) + Ri*x(k-Nh+1:k)*e(k);

end

Solution: A1 is RLS, A2 is LMS and A3 is RLS with forgetting factor
0.8. RLS is superior to LMS in convergence so clearly Error 2 and Coeff

2



3 belong to the LMS algorithm. The difference between RLS with and
without forgetting is that the RLS without forgetting factor will converge
as the number of samples increases even in presence of noise. Since the
Coeff 1 graph has some residual variations around the correct values this
graph belongs to algorithm A3. Since the coefficients vary for A3 this also
leads to a higher residual variance for the error. Graph Error 1 has less
residual variance as compared to Error 3 and hence Error 1 belongs to
RLS without forgetting. In conclusion:

• A1 Error 1 Coeff 2

• A2 Error 2 Coeff 3

• A3 Error 3 Coeff 1

�

2. Consider a real signal of an odd length N with the following character:

x(n) =

{

x(N − 1 − n), n = 0, . . . N − 1

x(n) = 0, n < 0, n ≥ N
(1)

Let X(f) denote the discrete Fourier transform of the signal x(n) and let
X(k) denote the N -point DFT of the signal. For each of the statements
below, show if they are true or false

(a) |X(f)| = |X(k)| where f = 2πk/N and 0 < k < (N − 1)/2

(b) X(f) = X(−f)∗

(c) ∠X(f) = ∠X(−f)

(d) X(k) = X((N − 1)/2 + k), k = 0, . . . (N − 1)/2

(e) X(k) = −X(N − 1 − k), k = 0, . . . , N − 1

(10p)

Solution: The signal x(n) is symmetric and real but time shifted M ,

(N−1)/2 time steps. Define xs(n) = x(n+M) which is a signal symmetric
around n = 0. Hence, we can write the Fourier transform as

X(f) =

N−1
∑

n=0

x(n)e−j2πfn = e−j2πfM
M
∑

n=−M

xd(n)e−j2πfn

= e−j2πfM
M
∑

n=−M

xd(n) cos(2πfn)

(2)

where the last equality follows from the fact that xd is real and symmet-
ric. Now since (e−j2πfM )∗ = e−j2π(−f)M statement b) is correct. Now
∠X(f) = −2πfM 6= −2π(−f)M = ∠X(−f) so statement c) is incorrect.
The discrete Fourier transform (DFT) is:

X(k) =

N−1
∑

n=0

e−j2πkn/N (3)
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DFT is thus samples at the Fourier transform at f = k/N . Hence state-
ment a) is false. Due to the periodicity of X(f) we have X(f +1) = X(f).
Using (2) this leads to X(f) = X(−f)∗ = X(1−f)∗. This means that for
the DFT we have X(k) = X(N − k)∗ for k = 1, . . . ,M which shows that
statements d) and e) are incorrect. �

3. Consider the following setup

y(n) =

Nh−1
∑

k=0

h(k)u(n − k) + v(n)

where y(n) is a noisy measurement of the output of the FIR system, u(n)
is the input and v(n) is the measurement noise. The measurement noise is
modeled as a white stochastic process with zero mean and variance σ2

v and
uncorrelated with the input signal. The input to the system is a periodic
signal where the period is known to be N (u(n) = u(n + N) for all n).
Furthermore we also know that N ≥ Nh.

(a) Write the input signal u(n) as a discrete time Fourier series and show
how the coefficients can be calculated from one period of u(n). (2p)

(b) Present a method to calculate (estimate) the impulse response h(k)
from measurements of y(n). (5p)

(c) What is the effect of the noise? Is the expected value of the calculated
filter coefficients equal to the true ones? How does the variance of
the estimate depend on the number of periods measured? (3pt)

Solution: (a) We start with the DFT relations

U(k) =

N−1
∑

n=0

u(n)e−j2πkn/N and u(n) =
1

N

N−1
∑

k=0

U(k)ej2πkn/N (4)

where the last term is the Fourier series representation of the periodic
input signal.

(b,c) Since the input is periodic the output of the filter is periodic and the
measurement is a periodic signal with white noise added. If we denote the
DFT of one period of the measured signal Y (k) clearly

Y (k) = H(k)U(k) + V (k) (5)

where H(k) is the N -point DFT of the impulse response of the FIR co-
efficients (zero padded to length N) and V (k) is the DFT of the noise
sequence. Since v(k) is zero mean we have (k, l = 0, . . . , N − 1)

E{V (k)} = E

N−1
∑

n=0

v(n)e−j2πkn/N = 0

E{V (k)V (l)∗} =

{

Nσ2
v , k = l

0, k 6= l

(6)
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where the last equality follows from the fact that

N−1
∑

k=0

e−j2πk/N =

{

N, k = 0,±N,±2N, . . .

0, otherwise
(7)

A natural estimate of the DFT of the FIR filter coefficients are thus

Ĥ(k) = Y (k)/U(k) = H(k) + V (k)/U(k) (8)

The expected value of this estimate is

EĤ(k) = H(k) (9)

which means that the estimate is unbiased. The variance of the estimate
is

E{|Ĥ(k) − H(k)|2} = Nσ2
v/|U(k)|2 (10)

Here we see that the variance for frequency k is inversely proportional to
the energy of the input signal at that frequency.

By the inverse DFT we finally obtain

ĥ(n) =
1

N

N−1
∑

k=0

Ĥ(k)ej2πkn/N = h(n) +
1

N

N−1
∑

k=0

V (k)/U(k)ej2πkn/N (11)

with expected value and variance

E{ĥ(n)} = h(n)

E{|ĥ(n) − h(n)|2} =
1

N

N−1
∑

k=0

σ2
v/|U(k)|2

(12)

If we measure M periods we can average out the noise by simply forming
the average over M periods

ya(n) =
1

M

M−1
∑

m=0

y(n + mM), n = 0, . . . , N − 1 (13)

and then use ya(n) in the method outlined above. The variance of the
noise is thus reduced from σ2

v to σ2
v/M and consequently also the variance

of the filter coefficients estimates. �

4. A digital decimation stage consists of a linear filter and the down-sampling
step. The real signal to be decimated has the following characteristics:

• minf |X(f)| = A, |f | < 0.45/2

• |X(f)| = 0, 0.45/2 < |f | < 0.55/2

• maxf |X(f)| = B, 0.55/2 < |f | < 1/2

where B/A = 2. The low frequency portion should be kept after decima-
tion and the high frequency portion should be rejected.
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a) What is a suitable down-sampling factor D? (2p)

b) Derive a filter specification such that the SNR in the down-sampled
signal is at least 40 dB and the maximal passband deviation is max-
imally 3 dB. (2pt)

c) An N-th order Butterworth filter with 3 dB cut off at Ωc has an
amplitude characteristic of the form

|H(Ω)|2 =
1

1 + (Ω/Ωc)2N

Derive the minimal order digital sampled IIR filter of Butterworth
type which meets the specifications above. Use the Bilinear design
method where the relevant equations are

s = 2
z − 1

z + 1
and Ω = 2 tan

ω

2

In your solution you should derive the minimal order and illustrate
the steps needed to be performed to derive the digital filter. You do
not have to calculate the filter coefficients. (6pt)

Solution: (a) The low frequency signal to retain occupy a little less than
half the spectrum so a suitable factor to downsample is 2.

(b) The required SNR of 40 for the signal implies that we should have an
alias effect for all frequencies which is less than 40 dB (100 in amplitude).
The stated properties of the high an low frequency parts of the spectrum
thus imply that the filter should attenuate the high frequency portion 200
times for all frequencies. If we define the -3 dB point of the filter as the
crossover frequency as fc we then obtain the following specifications

• fc = 0.45/2 End of passband frequency

• fs = 0.55/2 Start of stopband frequency

• |H(f)|2 < 1/2002, |f | > fs Stopband attenuation

(c) The amplitude function of the Butterworth filter is monotonically de-
creasing. At Ω = Ωc it has an attenuation of −3 dB which thus should
be associated with fc. The next design point is thus the required attenu-
ation at fs as listed above which is the start of the stopband. We start by
moving the specification to the continuous time. We only need to consider
the frequencies since the amplitude function is invariant under the bilinear
transformation.

• Ωc = 2 tan(2πfc/2) = 1.707

• Ωs = 2 tan(2πfp/2) = 2.34

To find the minimal Butterworth design we thus need to solve for N in
the following equation

2002 = 1 + (Ωs/Ωc)
2N (14)

which yields

N =
ln(2002 − 1)

2 ln(2.34/1.707)
= 16.8 (15)
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Hence order 17 is needed to meet the specifications. Let H(s) be the de-
signed continuous time Butterworth filter of order 17. The corresponding
digital filter is then obtained by changing s for 2 z−1

z+1 . This yields a digital
IIR filter of the same order. �

5. Consider a filter in a state-space form where x(n) is the input and y(n) is
the output

z(n + 1) = Az(n) + Bx(n)

y(n) = Cz(n) + Dx(n).

Classify the following special models as either IIR or FIR filters:

(a)

A =

[

0.8 2
0.1 0.8

]

B =

[

1
1

]

C =
[

1 1
]

D = 0

(2pt)

(b)

A =

[

0 2
0 0

]

B =

[

1
1

]

C =
[

1 1
]

D = 1

(2pt)

(c)

A =

[

0 0
0.1 0

]

B =

[

1
0

]

C =
[

1 1
]

D = 0

(2pt)

Solution: An FIR filter has a finite length impulse response. If the input
is an impulse (x(n) = δ(n)) then y(n) = h(n) = CAnB for n > 0. For
(b) and (c) we directly note that A2 = 0 which implies that h(n) = 0
for k > 1. Hence both filters are of FIR type. To analyze (a) take the
Z-transform of the state-space equations and eliminate Z(z). This yields

H(z) = C(zI − A)−1B =
[

1 1
]

[

z − 0.8 −2
−0.1 z − 0.8

]

−1 [

1
1

]

=
2(z + 0.25)

(z − 0.8)2 − 0.2
=

2(z + 0.25)

(z −
√

2 − 0.8)(z −
√

2 + 0.8)

(16)

which clearly is an IIR filter. �

6. The optimal Wiener filter h(k) minimizes the variance of e(n) where

e(n) = d(n) −
N−1
∑

k=0

h(k)x(n − k).
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The filter input x(n) and desired signal d(n) are both zero mean and have
auto- and cross-correlation functions

γxx(n) =

{

σ2
x, n = 0

0, n 6= 0
γdx(n)











α1, n = 0

α2, n = 1

0, n > 1, n < 0

• What is the length of the optimal filter? (2pt)

• What are the optimal filter coefficients? (4pt)

Solution: The optimal FIR Wiener filter is obtained by

h = Φ−1
xx Γdx (17)

where the element i, j in Φxx is γxx(i− j), element j in column vector Γdx

is γdx(j − 1) and element j in column vector h is h(j − 1). Since γxx(n)
is is zero except for n = 0, the matrix Φxx is diagonal. Also note that
only the two first elements in Γdx are non-zero. Consequently all filter
coefficients except for the two first ones will be zero irrespectively of the
size of N > 2. Hence the optimal filter is of length 2. (b) Evaluating
h = Φ

−1
xx

Γdx yields h(0) = α1/σ
2
x and h(0) = α2/σ

2
x �

END

Good Luck!
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