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Problem 1 - Channel Capacity [15 points]

Part I

1. H(U) =
∑

i pi log2(1/pi) = 0.971 bits

2. One possibility is

symbol codeword probability
u1 1 0.6
u2 0 0.4

where the corresponding tree is

0.6

0.4

1

1

0

3. L̄1 = 0.6 · 1 + 0.4 · 1 = 1 bit

4. η = H(U)/L̄1 = 97.1%

5. Coding over three consecutive symbols yields a total of 23 = 8 possible combinations:

symbol codeword probability
u1u1u1 11 0.216
u1u1u2 011 0.144
u1u2u1 001 0.144
u1u2u2 101 0.096
u2u1u1 000 0.144
u2u1u2 100 0.096
u2u2u1 0101 0.096
u2u2u2 0100 0.064

The tree corresponding to this code is

0.096

0.064

0.096

0.096

0.144

0.144

0.144

0.216

0.16

0.192

0.288

11

011

001

000

101

100

0101

0100

0.304

0.408

0.592

1

1
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L̄3 = 2 · 0.216 + 3 · 0.144 · 3 + 3 · 0.096 · 2 + 4 · 0.096 + 4 · 0.064 = 2.944 bits

η = 3H(U)/L̄3 = 98.94%

Part II

1. First recall the definition of the binary entropy function:

Hb(p) = −p log2 p− (1− p) log2(1− p). (1)

Let p = PX(x1). With this we can write

PY |X Y = y1 Y = y2 Y = y3

X = x1 1− ε ε 0
X = x2 0 ε 1− ε

PX,Y Y = y1 Y = y2 Y = y3

X = x1 p(1− ε) pε 0
X = x2 0 (1− p)ε (1− p)(1− ε)

PY (y) =


p(1− ε), y = y1

ε, y = y2

(1− p)(1− ε), y = y3

PX|Y Y = y1 Y = y2 Y = y3

X = x1 1 p 0
X = x2 0 (1− p) 1

Using the above probabilities, the following quantities can be computed.

H(X) = Hb(p)

H(Y ) = (1− ε)Hb(p) + Hb(ε)

H(X|Y ) = εHb(p)

H(Y |X) = Hb(ε)

H(X,Y ) = Hb(p) + Hb(ε).

Therefore,

I(X;Y ) = H(Y )− H(Y |X)

= H(X)− H(X|Y )

= H(X) + H(Y )− H(X,Y )

= (1− ε)Hb(p)

For the first input distribution, p = 0.5 and I(X;Y ) = 1− ε.

For the second input distribution, p = 0.7 and I(X;Y ) ≈ 0.88(1− ε).
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2. The capacity is given by the mutual information, maximized over all possible input distributions, i.e.,

C = max
p(x)

I(X;Y )

For the given channel, the input distribution can be parametrized by one parameter p and hence we have
a one-dimensional optimization problem

C = max
0≤p≤1

(1− ε)Hb(p) = (1− ε) max
0≤p≤1

Hb(p) = 1− ε

where the second step follows because Hb(p) is maximized (and equal to one) when p = 0.5.
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Problem 2 - Signal Constellations and Maximum Likelihood [15 points]

1. For Ω1, the average energy per symbol is Es = 8A2/8 = A2, and therefore A =
√

Es.

For Ω2, the average energy per symbol is Es = (4B2 + 4 · 4B2)/8 = 5B2/2, and therefore B =
√

2Es/5.

2. An example of a Gray mapping for each constellation is depicted below.
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011
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000
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110

(a) Ω1

111

000

110

001

100

011

101

010

(b) Ω2

Figure 1: Gray mapping examples for the constellations.

3. The maximum likelihood decision regions can be seen below.

(a) Ω1 (b) Ω2

Figure 2: Maximum likelihood decision regions for the constellations.

4. Using the nearest neighbor approximation (see lecture notes for more details), PΩ2
s is computed as

PΩ2
s ≈ ĀminQ

√d2
E,min
2N0

 . (2)

By checking the Euclidean distance between all pairs in Ω2, it can be verified that the minimum distance
is dE,min = 2B sin(π/4) =

√
2B =

√
4Es/5. This is the distance between points on the circle with radius
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B. The average number of neighbors at this distance is Āmin = (4 · 2 + 4 · 0)/8 = 1, and thus,

PΩ2
s ≈ ĀminQ

√d2
E,min
2N0

 = Q
(√

2Es
5N0

)
. (3)

Since Q( · ) decreases with increasing arguments, limN0→0 P
Ω2
s = 0.

5. When s ∈ Ω1, the maximum likelihood decision rule can be written as

ŝML = argmax
s∈Ω1

p(r|s)

= argmin
s∈Ω1

|r − s|2

= argmin
s∈Ω1

(|r|2 − 2<{rs∗}+ |s|2)

= argmin
s∈Ω1

−2<{rs∗}

= argmax
s∈Ω1

<{rs∗},

where |r|2 can be discarded since r is not a function of s, and |s|2 can also be discarded since it is constant
due to Ω1 being an 8PSK format.

6. When N0 → 0, the phase noise caused by θ becomes the only possible source of errors. Since the symbol
angles in Ω1 are spaced apart by π/4, α should be less than π/8 to ensure that PΩ1

s → 0 when N0 → 0.

7. a) Since β is a continuous uniform random variable, Pr(β = 0) = 0.

b) In the considered received-signal model, β acts as amplitude noise. Since Ω1 is constant modulus,
i.e. all the constellation points have the same amplitude, β will not impact the symbol detection.
This can be seen by looking at the detection regions for Ω1 in part 3. If β = 0 symbol errors would
occur, but Pr(β = 0) = 0 and hence PΩ1

s → 0 when N0 → 0.

For Ω2, however, it is clear from the decision regions in part 3 that β will cause problems, since
received constellation points on the outer circle will move towards the decision regions of the inner-
circle points. Therefore, PΩ2

s does not tend to zero when N0 → 0.
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Problem 3 - Linear Block Codes and LDPC Codes [15 points]

Part I

1.

H1 =


1 1 1 1 0 0
0 0 0 1 1 0
0 1 1 0 0 1
1 0 0 0 1 1


2. The girth is the length of the shortest cycle in the Tanner graph, which is 4 in this case. It is highlighted

in Fig. 3.

Figure 3: Tanner graph with highlighted girth.

3. By considering the Tanner graph, we get

Λ(x) = x2 P(x) = 1
4x

2 + 1
2x

3 + 1
4x

4.

Alternatively, we can get the same results from the parity check matrix G1 by considering the weight
of the rows and the columns. The given code is an irregular LDPC code since the CNs are of different
degrees.
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Part II

1. The generator matrix has three rows. If we choose the second, the third, and the fifth codeword for the
generator matrix, we get

Gs =

 0 1 1 1 0 0
1 0 0 0 1 0
1 1 1 0 0 1

 .
From this, the parity-check matrix follow directly as

Hs =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 0 1

 .
2. The code parameters are N = 6, K = 3, dmin = 2. The code rate follows as Rc = 3/6 = 1/2.

3. The syndrome table can be found below.

syndrome error vector
000 000000
001 001000
010 010000
011 000100
100 100000
101 101000
110 110000
111 000001

4. s = ȳHT
s = (110). From the syndrome table, we note that this corresponds to the error patter e =

110000. Hence, ĉ = ȳ + e = (000000).

5. The parity-check matrix of C2, Hs, is the generator matrix of the dual code C⊥. Hence, we find the
codewords of C⊥, c̃ by calculating c̃ = uHs for all u ∈ {0, 1}3. Hence,

C⊥ =



(0 0 0 0 0 0),
(1 0 0 0 1 1)
(0 1 0 1 0 1)
(1 1 0 1 1 0)
(0 0 1 1 0 1)
(1 0 1 1 1 0)
(0 1 1 0 0 0)
(1 1 1 0 1 1)


.
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Problem 4 - Convolutional Codes and the Viterbi Algorithm [15 points]

Part I

1.

G1 =
(

1 +D +D2 1 +D
)

2. We divide G by 1 +D +D2 and get

GRSC =
(

1 1+D
1+D+D2

)
.

The corresponding block diagram is shown in Fig. 4.

u D D

+

+

+

c1

c2

Figure 4: Encoder ERSC

3. The trellis diagram is depcited in Fig. 5.

00
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11

1/00

0/
01

1/10

Figure 5: One section of the trellis.

4. In order to be able to do hard decision decoding, we require a binary received vector. From y and the
mapping rule, we obtain

ȳ =
(

0 1 0 1 1 1 0 1 0 0
)
.

We then use ȳ and the trellis from 3) to run the Viterbi algorithm as depicted in Fig. 6. We note that
on three occasions, the cumulative weights are equal and we randomly discard a path. Hence, either
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choice is correct. Therefore, any of the codewords and correspond information bits

c1 =
(

1 1 1 1 1 0 0 0 0 0
)

u1 =
(

1 0 0 0 0
)

c2 =
(

0 0 1 1 1 1 1 0 0 0
)

u2 =
(

0 1 0 0 0
)

c3 =
(

0 0 0 0 1 1 1 1 1 0
)

u3 =
(

0 0 1 0 0
)

c4 =
(

1 1 0 0 1 0 0 1 1 0
)

u4 =
(

1 1 1 0 0
)

is correct.
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Figure 6: Viterbi algorithm.

Part II

1. The codewords correspond to paths in the trellis diagram. Hence we find all codewords by traversing
every single path in the trellis. This leads to

C =



c1 =
(

0 0 0 0 0 0 0 0 0 0
)

c2 =
(

0 0 0 0 0 0 0 0 1 0
)

c3 =
(

0 0 0 0 1 1 1 1 1 0
)

c4 =
(

0 0 1 0 0 1 1 1 1 0
)

c5 =
(

0 0 1 0 0 0 0 1 0 0
)

c6 =
(

1 0 0 1 0 0 0 0 0 0
)

c7 =
(

1 0 0 1 0 0 0 0 1 0
)

c8 =
(

1 0 0 1 1 1 1 1 1 0
)

c9 =
(

1 0 1 1 0 1 1 1 1 0
)

c10 =
(

1 0 1 1 0 0 0 1 0 0
)



.
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2. For a code to be linear c + c̃ ∈ C for all c, c̃ ∈ C must hold. We note that

c2 + c3 =
(

0 0 0 0 0 0 1 1 0 0
)
/∈ C.

Hence, the code is not linear.

3. We note that C does not contain any codeword multiple times and that dH(c1, c2) = 1. Hence, dmin = 1.
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