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Exam in the course Antenna Engineering  

2015-06-05 

ANTENNA ENGINEERING (SSY100) 

(E4) 2014/15 (Period IV) 

Friday 5 June 1400-1800 hours. 

Teachers: Prof. Per-Simon Kildal, Associate Prof. Jian Yang, Assistant Prof. Rob 

Maaskant, Assistant Prof. Ashraf Uz Zaman, Assistant Prof. Andres Alayon 

Glazunov. 

 

Questions: Jian Yang, Tel. 1736, Mobil: 0733 678841 

The exam consists of 2 parts. Part A is printed on colored paper and must be 

solved without using the textbook. When you have delivered the colored text and 

the solutions of Part A (latest 17:00), the textbook can be used for Part B of the 

exam.  

You are allowed to use the following: 

For Part A:   Pocket calculator of your own choice 

For Part B only:  Mathematical tables including Beta 

   Pocket calculator of your own choice 

   Kildal’s compendium “Foundations of Antennas: A Unified 

    Approach for LOS and Multipath”  

(The textbook can contain own notes and marks on its original printed pages.  

No other notes are allowed.) 

Tentamen består av 2 delar. Del A har tryckts på färgade papper och skall lösas utan 

att använda läroboken. När du har inlämnat dom färgade arken med uppgifterna för 

del A och dina svar på dessa uppgifter (senast 17:00), kan du ta fram läroboken för att 

lösa del B. 

Tillåtna hjälpmedel: 

För del A:   Valfri räknedosa 

För del B:  Matematiska Tabeller inkluderad Beta 

   Valfri räknedosa 

   Kildals lärobok “Foundations of Antennas: A Unified  

Approach     for LOS and Multipath”  

(Boken kan innehålla egna noteringar skrivna på de inbundna sidorna. Extra ark med 

noteringar tillåts inte.) 
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PART A (must be delivered before textbook can be used) 
 

1.0 Foundations of Antenna Engineering (25p) 
 

 

1.1. What is the phase centre of an antenna?  What is the difference between a phase 

reference point and the phase centre? (2p) 

 

A: The phase centre is the particular phase reference point which minimizes the 

phase variation of the co-polar far-field function of an antenna over a given solid 

angle of interest. The phase center is determined by the antenna geometry but the 

phase reference point can be any point, free from the antenna geometry. 

 

1.2. Consider an antenna with a known far field function 𝑮(𝜃, 𝜑) and phase center 

location 𝒓0 in a given coordinate system, shown in Fig. 1.2a. Write the far field 

function of an array built up by two such antennas pointing in the same direction 

but with different locations. The locations are such that one has its phase centre 

located at 𝒓1 and the other at 𝒓2 , shown in Fig1.2b. Note that the phase centre is 

calculated for a certain angular region 0 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥 in a given φ-plane (φ = φ0). 

(2p) 

 

 
(a)                                           (b) 

Fig. 1.2 The configuration of (a) an antenna with its phase center located at 𝒓0, and (b) the same two 
antennas with their phase centres located at 𝒓1 and 𝒓2, respectively. 

 

A:  

 

𝑮𝑎𝑟𝑟𝑎𝑦(𝜃, 𝜑) = 𝑮(𝜃, 𝜑)𝑒𝑗𝑘(𝒓1−𝒓0)∙𝒓̂ + 𝑮(𝜃, 𝜑)𝑒𝑗𝑘(𝒓2−𝒓0)∙𝒓̂ 

 

1.3. Which requirement do we need to put on r2 - r1  in order to assure that there is no 

grating lobes within 0 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥. (1p) 

 

A: 

One of them is OK 

 

i) |𝒓2 − 𝒓1| ≤
𝜆

1+𝑐𝑜𝑠𝜃𝑚𝑎𝑥
 

ii) |𝒓2 − 𝒓1| ≤ 𝜆 

iii) |𝒓2 − 𝒓1| ≤ 𝜆/2 
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1.4. Please find the phase centre of the array antenna in 1.2 within the same angular 

region 0 ≤ 𝜃 ≤ 𝜃𝑚𝑎𝑥 in a given φ-plane (φ = φ0). (2p) 

A: With a new phase reference point 𝒓0𝑛𝑒𝑤, the far field function is  

 

𝑮𝑎𝑟𝑟𝑎𝑦,𝑛𝑒𝑤(𝜃, 𝜑) = 𝑮0(𝜃, 𝜑)𝑒
𝑗𝑘(𝒓1−𝒓0−𝒓0new)∙𝒓̂ + 𝑮0(𝜃, 𝜑)𝑒

𝑗𝑘(𝒓2−𝒓0−𝒓0new)∙𝒓̂ 

 

If we choose 𝒓0𝑛𝑒𝑤 =
𝒓𝟏−𝒓𝟐

2
− 𝒓0, we have 

 

𝑮𝑎𝑟𝑟𝑎𝑦,𝑛𝑒𝑤(𝜃, 𝜑) = 𝑮0(𝜃, 𝜑)2cos⁡[(𝑘
𝒓1 − 𝒓2

2
) ∙ 𝒓̂] 

No phase error introduced. So the phase center of the array antenna is at  

 

𝒓𝑃𝐶,𝑎𝑟𝑟𝑎𝑦 = 𝒓0𝑛𝑒𝑤 =
𝒓𝟏 − 𝒓𝟐

2
− 𝒓0 

 

1.5. Please answer for each of these antennas if they are a BOR0, BOR1, or non-BOR 

antenna. (2.5p) 

a) A dipole along the z-axis; 

A: BOR0 

b) An incremental dipole along the x-axis; 

A: BOR1 

c) A resonant-loop helical antenna with its spiral shaped wire around z-axis 

(resonant loop means that one loop has a length equal to one wavelength); 

A: non-BOR antenna 

d) A conical horn antenna excited by a TE11 waveguide mode and located with 

its symmetrical axis along the z-axis; 

A: BOR1 

e) A big circular planar array in xy-plane with small loop antennas as elements 

with element spacing of half wavelength and a uniform excitations of all 

elements. 

A: BOR0 because the elements (small loop antenna) are BOR0 and the 

aperture is a planar circle with uniform distribution. 

 

1.6. We can characterize an antenna system by using the figure of merit 𝐺 𝑇syst⁄ . 

Explain what 𝐺 and 𝑇syst stand for. How can you improve 𝐺 𝑇syst⁄  when you are 

designing an antenna system with a given diameter? You should point out at least 

three factors you would like to improve. (3p) 

A:  

G- antenna gain; Tsys – noise temperature of the system. 

Improve i) antenna aperture efficiency to increase G; ii) reduce the omic loss (or 

by other words increase the radiation efficiency) to increase G and reduce Tsys; 

iii) increase spillover efficiency to reduce Tsys; iv) reduce the physical 

temperature of the antenna so the noise temperature due to the omic loss 

decreases so Tsys is reduced; v) reduce the noise temperature of the receivers used 

in the system; vi) match between the antenna and the receiver. 

 

1.7. Linear and planar antennas can generally be analyzed in terms of two factors: the 

first being one of the three incremental elementary sources, and the second the 

Fourier transform of their excitation distribution. In the analysis of each of the 
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following three antennas, state which incremental source should be used and 

write the expression for the far field function due to the incremental source. (3p) 

a) A dipole along x-axis with the center of the dipole at the origin of the 

coordinate system; 

 

A: x-polarized incremental electric current; 

𝑮𝑖𝑑(𝜃, 𝜑) = 𝐶𝑘[𝒙̂ − (𝒙̂ ∙ 𝒓̂)𝒓̂] = 𝐶𝑘(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑𝜽̂ − 𝑠𝑖𝑛𝜑𝝋̂) 
 

b) A half wavelength long slot in an infinite large ground plane, where the slot is 

oriented along y-axis with its center at the origin of the coordinate system and 

the ground plane is lying in xy-plane. 

 

A: x-polarized incremental magnetic current; 

𝑮𝑖𝑚(𝜃, 𝜑) = 𝐶𝑘[𝒚̂ × 𝒓̂] = 𝐶𝑘(𝑐𝑜𝑠𝜑𝜽̂ − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑𝝋̂) 
 

 

c) A large paraboloidal reflector aperture with y-polarization. The aperture is at 

the xy-plane with its center at the origin of the coordinate system. 

 

A: y-polarized Huygen’s source; 

𝑮𝐻(𝜃, 𝜑) = 2𝐶𝑘cos
2(𝜃 2⁄ )(𝑠𝑖𝑛𝜑𝜽̂ + 𝑐𝑜𝑠𝜑𝝋̂) 

 

 

 

1.8. A large antenna has a circular planar aperture with the radius⁡𝑟 = 10𝜆, where λ is 

the wavelength at the operation frequency. The aperture efficiency of the antenna 

is 𝑒𝑎𝑝 =⁡−1.5 dB, and the radiation efficiency is 𝑒𝑟𝑎𝑑 = −0.25 dB. What is the 

realized gain of the antenna? (2p) 

 

A: 

𝐷𝑚𝑎𝑥 =
4𝜋

𝜆2
𝐴 =

4𝜋

𝜆2
𝜋𝑟2 = 4𝜋2 ∙ 100 = 36dBi 

 

𝐺𝑎𝑛𝑡 = 𝑒𝑎𝑝𝑒𝑟𝑎𝑑𝐷𝑚𝑎𝑥 = 36 − 1.5 − 0.25 = 34.25dB 

 

1.9. The total antenna efficiency of a paraboloidal reflector antenna can be factorized 

in several different sub-efficiencies that characterize different losses. Name as 

many of these sub-efficiencies as possible and explain them (no equations are 

needed). Try to give typical values of the sub-efficiencies in dB when the antenna 

is optimized for as high gain as possible. (3.5p) 

 

A: 

 

𝑒𝑎𝑝 = 𝑒𝑠𝑝 𝑒𝑝𝑜𝑙 𝑒𝑖𝑙𝑙 𝑒𝑝ℎ𝑎𝑠𝑒 𝑒𝑐𝑏 

𝑒𝑠𝑝 - ratio of power hitting reflector to total power (-0.05dB ~ -0.5dB); 

  - ratio of co-polar field power to total power within the subtended angle (~ -

0.1dB); 

𝑒𝑖𝑙𝑙 - a measure of how efficient the aperture is used (-0.4dB ~ -1.5dB); 

𝑒phase - a measure of loss due to phase error over aperture (~ -0.1dB); 
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𝑒𝑐𝑏 - a measure of loss due to center blockage (-0.15dB ~ -0.3dB); 

 

1.10. A large phased array has the directivity of 43 dBi when its main beam is at 

the direction of (𝜃0, 𝜑0) = (0°, 0°). What is the directivity of the array antenna 

when the main beam is steered to the direction of (𝜃0, 𝜑0) = (30°, 30°)? Assume 

that there is no grating lobes for the above two cases. (2p) 

 

A: 

𝐷𝜃0=30° = 𝐷𝜃0=0° + 10log10(𝑐𝑜𝑠𝜃0) = 43 − 0.62 = 42.38⁡dBi 
 

1.11. When the main beam of the array antenna in 1.9 is steered to the direction of 

(𝜃0, 𝜑0) = (45°, 30°), a grating lobe appears at the direction of (𝜃0, 𝜑0) =
(75°, 210°) with the same level as the main beam. Estimate the directivity of the 

antenna for this situation. (2p) 

 

A: 

 

𝑒𝑔𝑟𝑡 =
1

1 + 𝑐𝑜𝑠45° 𝑐𝑜𝑠75°⁄
= −5.7⁡dB 

 
𝐷𝜃0=45° = 𝑒𝑔𝑟𝑡𝑐𝑜𝑠𝜃0𝐷𝜃0=0° = 43 + 10log10(𝑐𝑜𝑠45°) − 5.7

= 43 − 1.5 − 5.7 = 35.8dBi 
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2.0 Antenna Systems in Multipath Environment (25p) 
 

2.1 Briefly explain the concept of multipath fading experienced by the induced 

voltage at the terminals of an antenna. (2p) 

 

A: Multipath fading is the fluctuation experienced by the received voltage 

when moving around in the (multipath) propagation environment. The waves 

arrive from multiple paths due to scattering, and impinge at the receiver 

inducing voltages that interfere with each other constructively or destructively.   

 

 

2.2 Briefly explain what Rich Isotropic MultiPath (RIMP) environment means. 

(2p) 

 

A: Isotropic means that the Angle-of-Arrivals are uniformly distributed over a 

sphere of unit radius, i.e., the likelihood of observing a wave impinging at the 

receiver is the same for all directions. And also that it is power balanced with 

cross-polar power discrimination equal 1 in linear scale or 0 dB in dB-scale, 

i.e., the average received power of a vertical polarization is equal to the power 

in the horizontal polarization.  

 

2.3 What is a MIMO system? What does “MIMO” stand for? What are the 

benefits to use MIMO systems? (2p) 

 

A: MIMO stand for multi-input and multi-output. It is a system where there 

are more than one transmitting antennas and more than one receiving antennas. 

By transmitting more than one independent data stream through MIMO 

channel, one can achieve higher data rate. 

 

2.4 Mention a simple way to control the coherence bandwidth and the inverse time 

delay spread of a reverberation chamber. (2p) 

 

A: can be controlled by loading the reverberation, e.g., with absorbers. This is 

possible since absorbers have a large impact on the mode bandwidth to which 

the coherence bandwidth is directly proportional. 

 

2.5 What is the fundamental parameter that characterizes the performance of a 

single-port antenna in rich isotropic multipath (RIMP)? (2p) 

 

A: The total radiation efficiency. 

 

2.6 Write the expression of total embedded efficiency of port 3 of a lossless 4-port 

antenna. Can this antenna parameter be measured in a reverberation chamber? 

(2p) 

 

A: 
2 2 2 2

,3 31 32 33 341totembe S S S S    
.  
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Yes. 

 

2.7 Write an expression for the definition of effective diversity gain (In the exam 

it was effective radiation efficiency, which is a typo. So we decide that 

everyone got 2 points for this question.) (2p) 

 

A:   

eff rad appG e G
 

 

2.8 State three ways to determine the complex correlation coefficient between port 

voltages in RIMP. (2p) 

 

A: From embedded element far-field functions, from S-parameters of the 

antenna (for lossless antennas only), from measured port voltages (channels) 

 

2.9 Briefly explain the main idea behind diversity. (2p) 

 

A: The idea is to exploit received signals with low correlation at different 

antennas. Fading dips do not occur simultaneously at the different antennas in 

multipath environments, especially in rich isotropic multipath channels. 

 

2.10 State three antenna diversity methods. (2p) 

 

A: polarization diversity, space diversity, pattern diversity. 

 

2.11 Briefly explain the definition of dBR. (2p) 

 

A: dBR is defined as the diversity gain in dB at a given probability level. The 

reference is a Rayleigh-shaped CDF corresponding to an ideal antenna with 

100% efficiency. 

 

2.12 The throughput of a wireless device equipped with a single antenna is 

measured in a reverberation chamber. It is noted that the measured throughput 

can be modelled by the Probability of Detection corresponding to the Rayleigh 

CDF. What is the throughput at the threshold level if the maximum throughput 

is max 1TPUT Mbps ? Note: The Rayleigh CDF describes the distribution of 

voltages. (3p) 

 

A:  max max (1 ) 1 ( 1) 368TPUT TPUT PoD TPUT CDF e kbps       
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PART B (You can use the textbook to solve this problem, but 
only after PART A has been delivered) 

3.0 Boundary Conditions, Reaction Concept, Equivalent 

Circuit of Antennas (25p) 

 

 

 

 

 

 

 

 
Fig 3.0  A rectangular waveguide fed by a monopole probe. 

 

Consider a hollow semi-infinitely long rectangular waveguide with PEC walls at 𝑧 =
0, 𝑦 = ±𝑎/2, 𝑥 = 0, and 𝑥 = 𝑏. The E-field distribution within the waveguide, when 

excited from the left by an incident EM field traveling in the negative 𝑧-direction (i.e. 

receiving situation, no probe excitation/current), is given through the TE01 mode as 

𝑬 = 𝐸0 cos (
𝜋

𝑎
𝑦) sin(𝑘𝑧𝑧) 𝒙̂, with 𝑘𝑧 = √𝑘2 − (

𝜋

𝑎
)
2

, where 𝐸0 is a constant 

amplitude, 𝑘 = 2𝜋/𝜆0 is the wavenumber of the medium and 𝜆0 is the wavelength in 

vacuum. 

 

 

3.1 Show that the above E-field satisfies the boundary conditions at the five PEC 

walls of the waveguide. (3p) 

 

A:  

The tangential component of the E-field must vanish at the PEC walls, i.e., 

𝐸𝑥 (𝑦 = ±
𝑎

2
) = 𝐸𝑧 (𝑦 = ±

𝑎

2
) = 0; 𝐸𝑥(𝑧 = 0) = 𝐸𝑦(𝑧 = 0) = 0, and; 𝐸𝑧(𝑥 =

𝑏) = 𝐸𝑧(𝑥 = 0) = 𝐸𝑦(𝑥 = 𝑏) = 𝐸𝑦(𝑥 = 0) = 0. 

 

3.2 Next, the probe is excited (i.e. transmitting situation, no incident waveguide field). 

The probe current is given as 𝑱 = 𝐼0 cos (
𝜋𝑥

2𝐿
) 𝛿(𝑦)𝛿(𝑧 − 𝑧0)[𝑈(𝑥) − 𝑈(𝑥 − 𝐿)]𝒙 

A/m2, where 𝐿 is the probe length, 𝑧0 is the probe distance from the back wall, 

𝑈(𝑥) is the Heaviside step function defined as 𝑈(𝑥) = 0 for 𝑥 < 0 and 𝑈(𝑥) = 1 

for 𝑥 ≥ 0, and 𝛿 is the Dirac delta function. Derive a closed form solution for the 

probe open-circuit receive voltage for the E-field defined above through a reaction 

integral formula. (5p) 

 

A:  

The reaction integral formula is given as⁡𝑉 = −
1

𝐼0
〈𝑬, 𝑱〉 = −

1

𝐼0
∭ 𝑬 ∙ 𝑱

+∞

−∞
d𝑉. 

Substituting the known quantities in this formula yields:  

𝑏 

𝑎 

𝒚̂ 

𝒙̂ 
𝒛̂ 
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𝑉 = −𝐸0∭ cos (
𝜋

𝑎
𝑦) sin(𝑘𝑧𝑧) cos (

𝜋𝑥

2𝐿
) 𝛿(𝑦)𝛿(𝑧 − 𝑧0)[𝑈(𝑥) − 𝑈(𝑥 −

+∞

−∞

𝐿)] d𝑉, which reduces to 𝑉 = −𝐸0 sin(𝑘𝑧𝑧0) ∫ cos (
𝜋𝑥

2𝐿
) d𝑥

𝐿

0
= −

2𝐸0𝐿

𝜋
sin(𝑘𝑧𝑧0). 

 

3.3 Assume that 𝑎 =
2

3
𝜆0,⁡then compute the optimal probe position 𝑧0 in terms of the 

free-space wavelength 𝜆0 that maximizes the open-circuit receiving voltage. 

Assume that the open-circuit receive voltage 𝑉 ∝ sin(𝑘𝑧𝑧0). (3p) 

 

A:  

The first maximum of 𝑉(𝑧0) appears if 𝑘𝑧𝑧0 =
𝜋

2
, where 𝑘𝑧 = √𝑘2 − (

𝜋

𝑎
)
2

 with 

𝑘 = 2𝜋/𝜆0 and 𝑎 =
2

3
𝜆0. Hence, 𝑘𝑧 = √(

2𝜋

𝜆0
)
2

− (
3𝜋

2𝜆0
)
2

= √
7

4

𝜋

𝜆0
, so that 𝑧0 =

4

√7
(
𝜆0

4
). In other words, it is about 51% larger than a quarter wavelength in free 

space. 

 

3.4 What is the reason that the probe has to be at a greater distance than 
𝜆0

4
 from the 

back wall to maximize the receiving voltage? (2p) 

 

A:  

The guided wavelength 𝜆g = 2𝜋/𝑘𝑧 =
4

√7
𝜆0⁡ for the fundamental TE mode, 

which is larger than the free space wavelength 𝜆0.  Since the probe-wall distance 

must be equal to 𝜆g/4, it is therefore larger than a 𝜆0/4. 

 

 

3.5 The next step is to open the waveguide at 𝑧 = 𝑧𝐴 and let it radiate as an open-

ended rectangular waveguide antenna. We wish to determine the far field function 

value 𝐺𝑥(𝒛̂) in Volts at 𝑓0 = 10 GHz for a unit current excitation. To this end, we 

let an 𝑥-polarized plane wave of 1 V/m be incident on the open-ended waveguide 

antenna. We measure that the short-circuited port current in the receiving situation 

is 1µA and also know that the antenna input impedance 𝑍11 = 50 Ω. Calculate 

𝐺𝑥(𝒛̂) (4p) 

 

A:  

The Thevenin open-circuit voltage 𝑉 is given as 𝑉 = −
2𝑗𝜆0

𝜂𝐼
𝐺𝑥𝐸𝑥

i = −
2𝑗𝜆0

𝜂
𝐺𝑥. 

From the equivalent circuit for receiving antennas we know that this voltage is 

also equal to the short-circuited port current multiplied by the antenna input 

impedance, i.e., 𝑉 = 50 ∗ 1E − 6 = 50 µV. Accordingly, 𝐺𝑥 = −
𝜂𝑉

2𝑗𝜆0
=

𝑗
120𝜋∗50E−6∗10E9

2∗3E8
= 0.3𝑗 Volt. 

 

3.6 At the input of the monopole probe we measure the reflection coefficient over 

frequency and observe an oscillatory behavior with period Δ𝑓 = 1 GHz. This is 

due to an undesired reflection that occurs directly at the probe input and a second 

one at the waveguide end. Compute the value 𝑧 = 𝑧𝐴 at which the waveguide has 

been cut using the theory of small reflections. The reflection at the back wall 
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(z=0) is irrelevant since it has been included in the design to achieve a good 

impedance match. The central operating frequency 𝑓0 = 10 GHz. (3p). 

 

A:  

 

From formula below (2.138) as 

 

𝛽2 − 𝛽1 =
𝜋

∆𝑧
 

We have 

𝛽1 = √𝑘2 − (
𝜋

𝑎
)
2

= √(
2𝜋

𝜆1
)
2

− (
𝜋

2
3 𝜆0

)

2

 

𝛽2 = √𝑘2 − (
𝜋

𝑎
)
2

= √(
2𝜋

𝜆2
)
2

− (
𝜋

2
3 𝜆0

)

2

 

Now 

𝜆0 =
300

10
= 30𝑚𝑚, 𝜆1 =

300

9.5
= 31.58𝑚𝑚, 𝜆2 =

300

10.5
= 28.57𝑚𝑚 

 

𝛽1 = √(
2𝜋

31.58
)
2

− (
3𝜋

2 ∙ 30
)
2

⁡ = 0.1221 

𝛽2 = √(
2𝜋

28.57
)
2

− (
3𝜋

2 ∙ 30
)
2

⁡ = 0.1536 

 

𝑍𝐴 = ∆𝑧 =
𝜋

∆𝛽
= 98.8𝑚𝑚 

 

3.7 Consider now an identical pair of open waveguide antennas. When antenna 1 is 

excited by 1 A, the open-circuit voltage of antenna 2 turns out to be 20𝑒𝑗𝜋 Volt 

and the source voltage at port 1 is 50 Volt. Next, antenna 2 is excited by a voltage 

source of 20𝑒𝑗𝜋 Volt. Compute the short-circuited current at antenna port 1 and 

the source current at port 2 using network (matrix) theory. Hint: the inverse of a 

2 × 2⁡matrix is: [
𝑎 𝑏
𝑐 𝑑

]
−1

=
1

𝑎𝑑−𝑏𝑐
[
𝑑 −𝑏
−𝑐 𝑎

].  (5p) 

 

A:  

Use that [
𝑍11 𝑍12
𝑍21 𝑍22

] [
𝐼1
𝐼2
] = [

𝑉1
𝑉2
] , where 𝐼1 = 1, 𝑉1 = 50, 𝐼2 = 0 (open circuit), 

and 𝑉2 = 20𝑒𝑗𝜋. Hence, 𝑍11 =
𝑉1

𝐼1
= 𝑍22 = 50 Ω, 𝑍12 = 𝑍21 =

𝑉2

𝐼1
= 20𝑒𝑗𝜋 Ω. 

Next, we use the admittance matrix equation 
1

𝑍11𝑍22−𝑍21𝑍12
[
𝑍22 −𝑍12
−𝑍21 𝑍11

] [
𝑉1
𝑉2
] =

[
𝐼1
𝐼2
]⁡to compute 𝐼1 and 𝐼2 for 𝑉2 = 20𝑒𝑗𝜋and 𝑉1 = 0 (short circuit), this yields 

𝐼1 = −0.19 A, and 𝐼2 = −0.48 A.  
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4.0 A bow-tie antenna array (25p) 
 
Fig. 4.0a shows a bow-tie antenna array (developed at Antenna Division, Chalmers), 

which can be modelled approximately by a four-quarter-wave-monopole array over a 

ground plane with a distance 𝑑 = 𝜆 4⁄  and a spacing 𝑆 = 𝜆 4⁄ ⁡between monopole 

input ports, shown in Fig. 4.0b. The coordinate system is defined as in the figure, with 

the origin at the centre of the ground plane. This array antenna can be used as a classic 

array antenna (or array element) or a MIMO antenna. In this problem, we use the 

model of the four quarter-wave monopoles to find the solution, and assume that the 

self-impedance of the quart-wave monopole in free space is the half of the self-

impedance of a half-wave dipole in free space, and the mutual impedance between 

two quart-wave monopoles in free space is the quarter of the mutual impedance of 

two half-wave dipoles in free space under the same configuration. 

 

 

 
(a)                                                      (b) 

Fig. 4.0 A bow-tie antenna array: (a) photo, and (b) the simple model of four quart-wave 
monopoles over a ground plane for the antenna. 
 

 
 

4.1 Define the excitations of ⁡𝑉1, 𝑉2, 𝑉3 and ⁡𝑉4 for the following three polarization 

cases in +z direction: (a) linear y polarization; (b) linear 𝜑 = 45° polarization; 

(c) Right hand circular polarization (RHC). (3p) 
 

A: 

(a) Linear y-polarized: 𝑉1 = 1, 𝑉2 = 0, 𝑉3 = −1, 𝑉4 = 0 or 𝑉1 = 1, 𝑉2 =
0, 𝑉3 = 0, 𝑉4 = 0; 

(b) Linear 𝜑 = 45° polarization: 𝑉1 = 1, 𝑉2 = −1, 𝑉3 = −1, 𝑉4 = 1 or 𝑉1 =
1, 𝑉2 = 0, 𝑉3 = 0, 𝑉4 = 1 

(c) RHC: 𝑉1 = −𝑗, 𝑉2 = −1, 𝑉3 = 𝑗, 𝑉4 = 1 or 𝑉1 = 𝑒𝑗0°, 𝑉2 = 𝑒𝑗90°, 𝑉3 =
𝑒𝑗180°, 𝑉4 = 𝑒𝑗270°. 

 
4.2 For the configuration of the four monopoles in Fig. 4.1b, we can ignore the 

mutual couplings between the orthogonal monopoles for an approximate 

calculation. Sketch the equivalent circuit for calculation of mutual impedance 

between the parallel monopoles (such as between monopoles 1 and 3). Explain 

all parameters used in your equivalent circuit. (2p) 
 
A: 
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Now the mutual coupling between dipoles 1 and 3 is mainly via the 
ground plane. We can use imaging method to remove the ground plane 
and add two image monopoles as 

 
 
where 𝑍1,1image, 𝑍3,1, 𝑍1,3image are the mutual impedances in free space for 

the above configuration. Therefore, the equivalent circuits are 
 

 
 

Note that the current on the image monopole has the same amplitude but 
opposite direction compared to the current on the monopole, such as −𝐼1 
on image monopole 1, and −𝐼3 on image monopole 3. Then, we can 
simplify the above equivalent circuit as 
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So the self-impedance of the monopole with the ground plane is 
 𝑍11 − 𝑍1,1𝑖𝑚𝑎𝑔𝑒  , the mutual impedance between monopoles 1 and 3 is 

𝑍3,1 − 𝑍1,3𝑖𝑚𝑎𝑔𝑒. 

 
 
 
 
 
 

The questions below are under the assumption that all mutual impedances 
between monopoles are ignored for simplifying the solutions. 
 

4.3 Write out the embedded far field function of monopole 1. (3p) 
 
A: 
Since we ignore the mutual coupling between monopoles, the embedded 
far field function of monopole 1 over the ground plan is the far field 
function of monopole 1 plus the far field function of its image. 
 
If we put the center of the monopole 1 at the origin of the coordinate 
system, the far field function is (similar to (5.5) in the text book) 

𝑮1(𝜃, 𝜑) = 𝜂𝐼0𝑮𝑖𝑑𝑦(𝜃, 𝜑)𝑗𝑦̃(𝑘𝒍̂ ∙ 𝒓̂) 

where  
𝑮𝑖𝑑𝑦(𝜃, 𝜑) = 𝐶𝑘(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑𝜽̂ + 𝑐𝑜𝑠𝜑𝝋̂)  ( eq. (4.79) in the book) 

𝑗𝑦̃(𝑘𝒍̂ ∙ 𝒓̂) = ∫ 𝑗(𝑦′
𝜆 8⁄

−𝜆 8⁄

)𝑒𝑗𝑘𝑦
′𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑𝑑𝑦′ 

Now the monopole is located at 𝒓1 =
𝜆

4
𝒚̂ +

𝜆

4
𝒛̂, and the image monopole is 

located at 𝒓1image =
𝜆

4
𝒚̂ −

𝜆

4
𝒛̂, so the embedded far field function is 

𝑮1𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑(𝜃, 𝜑) = 𝑮1(𝜃, 𝜑)(𝑒
𝑗𝑘𝒓1∙𝒓̂ − 𝑒𝑗𝑘𝒓1image∙𝒓̂) 
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The “-“ sign is due to the imaging current is opposite to the current of the 
monopole.  
 
 
 
 

4.4 Write out the far field function of the whole array when the excitations 
are for the RHC polarization along +z direction. (4p) 
 
A: 
Now the excitations are 𝑉1 = −𝑗𝑉, 𝑉2 = −𝑉, 𝑉3 = 𝑗𝑉, 𝑉4 = 𝑉 and the 
location is  

 

𝒓1 =
𝜆

4
𝒚̂ +

𝜆

4
𝒛̂,⁡⁡𝒓1image =

𝜆

4
𝒚̂ −

𝜆

4
𝒛̂ 

𝒓2 = −
𝜆

4
𝒙̂ +

𝜆

4
𝒛̂,⁡⁡𝒓2image = −

𝜆

4
𝒙̂ −

𝜆

4
𝒛̂ 

𝒓3 = −
𝜆

4
𝒚̂ +

𝜆

4
𝒛̂,⁡⁡𝒓3image = −

𝜆

4
𝒚̂ −

𝜆

4
𝒛̂ 

𝒓4 =
𝜆

4
𝒙̂ +

𝜆

4
𝒛̂,⁡⁡𝒓4image =

𝜆

4
𝒙̂ −

𝜆

4
𝒛̂ 

 
             So 

𝑮tot(𝜃, 𝜑) = −𝑗𝑉𝑮1(𝜃, 𝜑)(𝑒
𝑗𝑘𝒓1∙𝒓̂ − 𝑒𝑗𝑘𝒓1image∙𝒓̂)

− 𝑉𝑮2(𝜃, 𝜑)(𝑒
𝑗𝑘𝒓2∙𝒓̂ − 𝑒𝑗𝑘𝒓2image∙𝒓̂)

+ 𝑗𝑉𝑮3(𝜃, 𝜑)(𝑒
𝑗𝑘𝒓3∙𝒓̂ − 𝑒𝑗𝑘𝒓3image∙𝒓̂)

+ 𝑉𝑮4(𝜃, 𝜑)(𝑒
𝑗𝑘𝒓4∙𝒓̂ − 𝑒𝑗𝑘𝒓4image∙𝒓̂) 

 
Where  

𝑮1(𝜃, 𝜑) = 𝑮3(𝜃, 𝜑) = 𝜂𝐼0𝑮𝑖𝑑𝑦(𝜃, 𝜑)𝑗𝑦̃(𝑘𝒍̂ ∙ 𝒓̂) 

with  
𝑮𝑖𝑑𝑦(𝜃, 𝜑) = 𝐶𝑘(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑𝜽̂ + 𝑐𝑜𝑠𝜑𝝋̂)   

𝑗𝑦̃(𝑘𝒍̂ ∙ 𝒓̂) = ∫ 𝑗(𝑦′
𝜆 8⁄

−𝜆 8⁄

)𝑒𝑗𝑘𝑦
′sin𝜃sin𝜑𝑑𝑦′ 

and 
𝑮2(𝜃, 𝜑) = 𝑮4(𝜃, 𝜑) = 𝜂𝐼0𝑮𝑖𝑑𝑥(𝜃, 𝜑)𝑗𝑥̃(𝑘𝒍̂ ∙ 𝒓̂) 

with  
𝑮𝑖𝑑𝑥(𝜃, 𝜑) = 𝐶𝑘(cos𝜃cos𝜑𝜽̂ − sin𝜑𝝋̂)   

𝑗𝑥̃(𝑘𝒍̂ ∙ 𝒓̂) = ∫ 𝑗(𝑥′
𝜆 8⁄

−𝜆 8⁄

)𝑒𝑗𝑘𝑥
′sin𝜃cos𝜑𝑑𝑥′ 

 
 
 
 

4.5 Calculate the embedded impedance of monopole 1. You should sketch the 

equivalent circuit first, and then use data and the figures in the text book for 

the calculations. (4p) 
A: from 4.2, when we ignore the mutual impedance, the embedded impedance 

of monopole 1 is its self-impedance, equal to 𝑍11 − 𝑍1,1𝑖𝑚𝑎𝑔𝑒 
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𝑍11 = 0.5𝑍11,𝑑𝑖𝑝𝑜𝑙𝑒⁡ = 0.5 ∙ (73 + 0𝑗) = 36.5Ω 

𝑍1,1image = 0.25𝑍1,1image,dipole 

 From Figure 10.10 up, the mutual impedance for the side-by-side dipoles 
with 𝜆 2⁄  spacing is   

𝑍1,1image,dipole = −15 − 30𝑗⁡Ω 

𝑍11embedded = 𝑍11 + 𝑍1,1𝑖𝑚𝑎𝑔𝑒 = 36.5 − 0.25 ∙ (−15 − 30𝑗) = 40.25 + 7.5𝑗⁡Ω 

 
 

4.6 Calculate the effective and apparent diversity gains in rich isotropic multipath 

of this antenna if selection combining and a CDF-level of 1% are assumed for 

the case that only monopoles 1 and 2 are used, while dipoles 3 and 4 are 

terminated with loads. (4p) 

 

A: 

The embedded impedance of monopole 1 is 𝑍11embedded = 32.75 + 7.5𝑗⁡Ω, 

so  

|𝑆11| = |
𝑍0 − 𝑍11embedded

𝑍0 + 𝑍11embedded
| = |

50 − (40.25 + 7.5𝑗)

50 − (40.25 + 7.5𝑗)
| = 0.14 

 

Since we ignore all mutual coupling between monopoles, 𝑆21 = 0. Therefore, 

𝜌 = 0.  

𝐺app = 10√1 − 𝜌2 = 10 = 10dB 

 

𝐺eff = 𝑒𝑟𝑎𝑑𝐺app = (1 − |𝑆11|
2)𝑒𝑎𝑏𝑠𝐺app 

 

Since we ignore mutual coupling, 𝑒𝑎𝑏𝑠 = 0𝑑𝐵, and 1 − |𝑆11|
2 = 0.9804 =

−0.1𝑑𝐵, so  

𝐺eff = 10 − 0.1 = 9.9𝑑𝐵 
 

4.7 We now use this antenna array as a feed for a reflector antenna. We excite this 

array as a y-polarized feed. We need to locate the feed with its phase centre at 

the focus of the reflector. Please find the phase centre of the feed. (2p) 

 

A: The phase center is at the center of the ground plane. Look at the equivalent 

circuit by using imaging with four monopoles (monopoles 1 and 3 and their 

images), and using the same way as in problem 1.4, we can get that the phase 

center is at the center of the ground plane. 

 

4.8 The reflector has a subtended angle of 2 × 60°. Estimate the spillover 

efficiency, illumination efficiency and aperture efficiency (also called feed 

efficiency) of the reflector antenna. We assume here that the phase efficiency 

and polarization efficiency are 100%, and the blockage is ignored. (Tips: the 

feed can be modelled by cos𝑛(𝜃𝑓 2⁄ ) feed, and you need only use figures in 

the text book to estimate the efficiencies.) (3p) 

 

A: 

When the array is excited as y-polarized, the excitation is 
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 𝑉1 = 1, 𝑉2 = 0, 𝑉3 = −1, 𝑉4 = 0. In this case, monopoles 1 and 3 become a 

dipole. Even the center gap is 𝜆 4⁄ , and with an image dipole, we still can 

assume the far field function at 60° is similar to that of half-wave dipole. 

From figure 5.4, you can get the taper at  60°  is about -8 dB. (it is also OK 

that you estimate the taper is a bit larger, such as -10 dB.) 

 

From Figure 9.10, when the semi-subtended angle is 60°, the feed efficiency 

is about -1.05 dB (it is OK if you choose -1 or -1.1 dB). And the spillover 

efficiency is -0.35 dB. From 𝑒𝑎𝑝 =⁡𝑒𝑠𝑝𝑒𝑝𝑜𝑙𝑒𝑖𝑙𝑙𝑒𝑝ℎ𝑎𝑠𝑒𝑒𝑐𝑏, and now 𝑒𝑝𝑜𝑙 =

0dB,⁡𝑒𝑝ℎ𝑎𝑠𝑒 = 0dB, 𝑒𝑐𝑏=0 dB,  we have ⁡𝑒𝑖𝑙𝑙 = 𝑒𝑎𝑝 − 𝑒𝑠𝑝 ≈ −0.7 dB. 

 

 


