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Exam in the course Antenna Engineering  

2014-06-02 

ANTENNA ENGINEERING (SSY100) 

(E4) 2013/14 (Period IV) 

Monday 2 June 1400-1800 hours. 

Teachers: Prof. Per-Simon Kildal, Associate Prof. Jian Yang, Associate Prof. 

Marianna Ivashina, Assistant Prof. Rob Maaskant. 

 

Questions: Jian Yang, Tel. 1736, Mobil: 0703 678841 

The exam consists of 2 parts. Part A is printed on colored paper and must be 

solved without using the textbook. When you have delivered the colored text and 

the solutions of Part A (latest 17:00), the textbook can be used for Part B of the 

exam.  

You are allowed to use the following: 

For Part A:   Pocket calculator of your own choice 

For Part B only:  Mathematical tables including Beta 

   Pocket calculator of your own choice 

   Kildal’s compendium “Foundations of Antennas: A Unified 

    Approach for LOS and Multipath”  

(The textbook can contain own notes and marks on its original printed pages.  

No other notes are allowed.) 

Tentamen består av 2 delar. Del A har tryckts på färgade papper och skall lösas utan 

att använda läroboken. När du har inlämnat dom färgade arken med uppgifterna för 

del A och dina svar på dessa uppgifter (senast 17:00), kan du ta fram läroboken för att 

lösa del B. 

Tillåtna hjälpmedel: 

För del A:   Valfri räknedosa 

För del B:  Matematiska Tabeller inkluderad Beta 

   Valfri räknedosa 

   Kildals lärobok “Foundations of Antennas: A Unified  

Approach     for LOS and Multipath”  

(Boken kan innehålla egna noteringar skrivna på de inbundna sidorna. Extra ark med 

noteringar tillåts inte.) 
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PART A (must be delivered before textbook can be used) 
 

1.0 Foundations of Antenna Engineering (35p) 
 

 

1.1. An antenna located at 𝒓0 in a coordinate system has the far field function 

𝑮(𝜃, 𝜑). Write the far field function of the antenna when it is moved to the 

location 𝒓1. (2p) 

A: 

𝑮1(𝜃, 𝜑) = 𝑮0(𝜃, 𝜑)𝑒
𝑗𝑘(𝒓1−𝒓0)∙𝒓̂ 

 

1.2. What is the phase centre of an antenna?  (2p) 

A: 

 

The phase centre is the particular phase reference point which minimizes the phase 

variation of the co-polar far-field function over a given solid angle of interest. 

 

1.3. What is the definition of BOR0 and BOR1 antennas? Give two examples for both 

BOR0 and BOR1 antennas (Sketch them for clarification). (2p) 

A: 

BOR0 and BOR1 antennas are antennas with a Body-of-revolution geometry and far 

field function with no φ variation and first order φ variation (cos φ or sin φ), 

respectively. 

 

BOR0 antennas: 1) dipole on z-axis; 2) small loop antenna in x-y plane. 

BOR1 antennas: 1) incremental dipole on y-axis; 2) conical horn antenna excited by 

TE11 waveguide mode. 

 

 

1.4. We can characterize an antenna system by using the figure of merit 𝐺 𝑇syst⁄ . 

Explain what 𝐺 and 𝑇syst stand for. What are the main contribution factors to both 

𝐺 and 𝑇syst? (List at least 3 factors for both 𝐺 and 𝑇syst.) (3p) 

A: 

𝐺 is the antenna gain and 𝑇syst is the antenna system noise temperature. 

 

Contribution factors to 𝐺: 1) aperture efficiency of the antenna; 2) radiation efficiency 

of the antenna; 3) mismatch factor of the antenna input with receiver; 4) alignment 

polarization efficiency. 

 

Contribution factors to 𝑇syst: 1) receiver’s noise temperature; 2) ohmic losses of the 

antenna; 3) antenna’s physical temperature; 4) relative power hitting the ground; 5) 

brightness temperature in the main beam direction. 

 

 

1.5. In the course, three different methods for measuring antenna gain are discussed. 

Write two of them and list the requirements for these two methods. (2p) 

A: 

1) Two antenna method: the two antennas should be identical and the distance 

between antennas should be known. 
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2) Three antenna method: the distance between antennas should be known. 

3) Replacement method: you need to have an antenna with known Gain. 

 

1.6. What environment does a Reverberation Chamber emulate? Explain why the 

chamber can emulate it. (2p) 

A: 

Reverberation Chamber emulates the RIMP (Rich Isotropic Multipath 

environment. 

 

Reverberation Chamber has many modes which can be stirred by different means 

in the chamber. Each mode can be considered as 8 incident waves with different 

incident angles. 

 

 

1.7. List three antenna characteristics that can be measured using a Reverberation 

Chamber, and the advantages or disadvantages compared to the traditional 

anechoic chamber measurement. (3p) 

A: 

Radiation efficiency, diversity gain, total radiate power, receiver sensitivity and data 

throughput. 

Faster, cheaper, simpler with similar or better accuracy compared to anechoic 

chamber measurement. 

 

 

1.8. Antennas can be analyzed in terms of three incremental elementary sources. 

Write the name of them and the expression of the far field function due to the 

three incremental sources with y polarization. (3p) 

A: 

a) Incremental electric current source 

𝐺𝑖𝑑(𝜃, 𝜑) = 𝐶𝑘[𝒚̂ − (𝒚̂ ∙ 𝒓̂)𝒓̂] = 𝐶𝑘[cos𝜃sin𝜑𝜽̂ + cos𝜑𝝋̂] 
 

b) Incremental magnetic current source 

𝐺𝑖𝑚(𝜃, 𝜑) = 𝐶𝑘[−(𝒙̂) × 𝒓̂] = 𝐶𝑘[sin𝜑𝜽̂ + cos𝜃cos𝜑𝝋̂] 
 

c) Incremental Huygen’s source 

𝐺𝐻(𝜃, 𝜑) = 2𝐶𝑘cos
2⁡(
𝜃

2
)[sin𝜑𝜽̂ + cos𝜑𝝋̂] 

 

1.9. What is the directivity limitation (upper bound) of a large antennas? Assume that 

the physical area of the antenna is A. (2p) 

A: 

𝐷𝑚𝑎𝑥 =⁡
4𝜋

𝜆2
𝐴 

 

 

1.10. What is the directivity limitation (upper bound) for small antennas? (1p) 

A: 

𝐷𝑚𝑎𝑥 = ⁡3 
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1.11. Write the value of the directivity for the following small antennas: (i) a 

halfwave dipole in free space; (ii) a quarter-wave monopole on a ground plane; 

(iii) a resonant slot on infinite larger ground plane. (3p) 

A: 

(i) 2.16 dBi;  (ii) 5.16 dBi;  (iii) 5.16 dBi. 

 

1.12. During the course, two classes of aperture antennas have been analyzed in the 

Chapter “Radiation from apertures”. Describe these two classes of apertures and 

how they can be analyzed using aperture theory (i.e., by using which equivalent 

principle and incremental source)? (3p) 

A: 

i) Apertures in PECs. Using PEC equivalent and magnetic current to 

analyze. 

ii) Apertures in free space. Using free space and Huygens equivalent to 

analyze. Use both electric and magnetic currents. 

 

1.13. What is the 1st sidelobe level compared to the beam maximum for both 

rectangular and circular uniform apertures? (2p) 

A:  

i) - 13.2 dB; 

ii) -17.6 dB. 

 

1.14. Describe the condition for non-radiating grating lobes for planer array 

antennas. (2p) 

A: 

One of the following three alternative solutions is OK. 

i) √(sin𝜃0cos𝜑0 + 𝑝𝑥
𝜆

𝑑𝑥
)2 + (sin𝜃0sin𝜑0 + 𝑞𝑥

𝜆

𝑑𝑦
)2 > 1 +

𝜆

𝐷
 

ii) 𝑑𝑥 <
𝜆

1+|sin𝜃0|+𝜆 𝐷𝑥⁄
 ; ⁡⁡𝑑𝑦 <

𝜆

1+|sin𝜃0|+𝜆 𝐷𝑦⁄
 

iii) 𝑑𝑥 <
𝜆

2
; ⁡𝑑𝑦 <

𝜆

2
 

1.15. Write the expression of the directivity of a rectangular planer array (𝐿𝑥 × 𝐿𝑦) 

with the main beam at (𝜃0, 𝜑0). (3p) 

A: 

𝐷 = 𝑒grt𝑒pol𝑒illcos𝜃0𝐷𝑚𝑎𝑥 

where 

 

𝑒grt is the grating lobe efficiency, 𝑒pol is the polarization efficiency, 𝑒ill⁡is the 

illumination efficiency, and  

𝐷𝑚𝑎𝑥 =⁡
4𝜋

𝜆2
𝐿𝑥𝐿𝑦 
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2.0 MIMO System and Capacity (15p) 

 

 
 

Fig 1: A MIMO system. 

 

Fig. 1 shows a MIMO system in free-space whose antenna patterns/beams can be 

controlled arbitrarily. Assuming that the power at the transmitter side is divided 

equally, the capacity formula can be calculated as 

 

𝐶 = log2 [det (𝑰 +
𝛾0

𝑁
𝑯𝑯𝐻)], 

 

where the MIMO channel H is a M×N matrix, and where N is the number of 

transmitting antennas, M is the number of receiving antennas, 𝛾0⁡is the reference 

signal-to-noise ratio (SNR), “det” stands for determinant of a matrix, and the 

superscript H represents the Hermitian (transpose and conjugate) operator. Hint: 

det ([
𝑎 𝑏
𝑐 𝑑

]) = 𝑎𝑑 − 𝑏𝑐. 

 

 

2.1. What is “Capacity” of a communication system?  (1p) 

A: 

Capacity is the maximum data rate a communication system can achieve with 

negligible error rate. 

 

2.2. What is a MIMO system? What does “MIMO” stand for? (2p) 

A: 

MIMO stand for multi-input and multi-output. It is a system where there are more 

than one transmitting antennas and more than one receiving antennas. By 

transmitting more than one independent data stream through MIMO system, one 

can achieve higher data rate. 

 

2.3. What are the benefits of using MIMO systems? (2p) 

A: 

Using MIMO to transmit independent multiple data streams (spatial 

multiplexing), one can enhance the data rate; using MIMO for diversity, one can 

achieve more reliable communication (or larger diversity gain). 

 

2.4. RX1 receives signals only from TX1, and RX2 receive signal only from TX2. 

What is the MIMO capacity for the cases when: a) 0 = 0 dB, b) = 10 dB? (3p) 

A: 

0

TX1 

TX2 

Combiner 

RX1 

RX2 

Combiner 
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1 0

0 1
H

 
  
 

.  a) 
2

1 0 1 0 1 01
log [det( )] 1.1699

0 1 0 1 0 12
aC

     
       

     

.                                           

b) 
2

1 0 1 0 1 010
log [det( )] 5.1699

0 1 0 1 0 12
bC

     
       

     

. 

 

2.5. RX1 receives signals from both TX1 and TX2, with the same amplitudes and 

phases; and RX2 receives signals from both TX1 and TX2, with also the same 

amplitudes and phases. What is the MIMO capacity for the cases when a) 0 = 0 

dB, b) = 10 dB? (3p) 

A: 
1 1

1 1
H

 
  
 

. a) 
2

1 0 1 1 1 11
log [det( )] 1.5850

0 1 1 1 1 12
aC

     
       

     

.                                                

b) 
2

1 0 1 1 1 110
log [det( )] 4.3923

0 1 1 1 1 12
bC

     
       

     

. 

 

2.6. Rx1 receives signals from both TX1 and TX2, with the same amplitudes but 90 

degree phase shifted; and RX2 receives signals from both TX1 and TX2, with 

also the same amplitudes but 90 degree phase shifted. What is the MIMO 

capacity for the cases when a) 0 = 0 dB, b) = 10 dB? (3p) 

A: 
1

1

j
H

j

 
  
 

. a) 
2

1 0 1 11
log [det( )] 2

0 1 1 12
a

j j
C

j j

     
       

     

.                                                

b) 
2

1 0 1 110
log [det( )] 6.9189

0 1 1 12
b

j j
C

j j

     
       

     

. 

 

2.7. Which case(s) gives the best performance in terms of capacity (for = 0 dB and 

= 10 dB cases, respectively)? (1p) 

A: 

Case 2.6) gives the best capacity for both 0 = 0 dB and 0  = 10 dB cases.  

 

 

 

 

 

 

 

0

0

0

0
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PART B (You can use the textbook to solve this problem, but 

only after PART A has been delivered) 

3.0 Antenna Reciprocity, Equivalent Circuits of Antennas, 

Field Equivalence Principles, Boundary Conditions, 

Reaction Concept (30p) 

 

 

 

 

 

 

 

Fig 2: A pair of identical H-plane coupled dipole antennas. 

 

3.1 Consider an identical pair of dipole antennas in a side-by-side arrangement, in free 

space (see Fig. 2). When antenna 1 is excited by 1 A, the open-circuit voltage of 

antenna 2 turns out to be 20𝑒𝑗𝜋 Volt and the source voltage at port 1 is 50 Volt. 

Next, antenna 2 is excited by a voltage source of 20𝑒𝑗𝜋 Volt. Compute the short-

circuited current at antenna port 1 and the source current at port 2 using network 

theory. Hint: the inverse of a 2 × 2⁡matrix is: [
𝑎 𝑏
𝑐 𝑑

]
−1

=
1

𝑎𝑑−𝑏𝑐
[
𝑑 −𝑏
−𝑐 𝑎

].  (4p) 

 

 

A: Use that [
𝑍11 𝑍12
𝑍21 𝑍22

] [
𝐼1
𝐼2
] = [

𝑉1
𝑉2
] , where 𝐼1 = 1, 𝑉1 = 50, 𝐼2 = 0 (open circuit), 

and 𝑉2 = 20𝑒𝑗𝜋. Hence, 𝑍11 =
𝑉1

𝐼1
= 𝑍22 = 50 Ω, 𝑍12 = 𝑍21 =

𝑉2

𝐼1
= 20𝑒𝑗𝜋 Ω. Next, 

we use the admittance matrix equation 
1

𝑍11𝑍22−𝑍21𝑍12
[
𝑍22 −𝑍12
−𝑍21 𝑍11

] [
𝑉1
𝑉2
] = [

𝐼1
𝐼2
]⁡to 

compute 𝐼1 and 𝐼2 for 𝑉2 = 20𝑒𝑗𝜋and 𝑉1 = 0 (short circuit), this yields 𝐼1 = −0.19 A, 

and 𝐼2 = −0.48 A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. A strip dipole excited by an incident plane wave. 

 

𝑬i 

2𝑊 

2𝐿 

𝑱 

𝒚̂ 

𝒛̂ 

𝒙 

 1  2 
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3.2 Consider Fig. 3, which shows a 𝜆/2 strip dipole antenna placed at 𝑦 = 𝐿. The 

surface current distribution, when excited by a current source 𝐼 = 1 A across the 

infinitesimal strip gap at 𝑧 = 0, is 𝑱 =
1

2𝑊
cos (

𝜋𝑧

2𝐿
) 𝒛̂ A/m with finite support 

−𝐿 ≤ 𝑧 ≤ 𝐿⁡and −𝑊 ≤ 𝑥 ≤ 𝑊. The antenna self-admittance is 0.01⁡Siemens. 

Given these transmitting characteristics, consider now the receiving situation, 

where this antenna is excited by the plane wave field 𝑬i = 𝑒−𝑗𝑘𝑦𝒛̂ − 0.5𝑒−𝑗𝑘𝑦𝒙̂, 

where 𝑘 is the free-space wavenumber. 

 

(a) Is the incident field circularly polarized, linearly polarized, or elliptically 

polarized? (1p) 

 

A: Linearly polarized 

 

 

(b) Compute the open-circuit voltage at the center of the antenna through a 

reaction integral and show in steps that it equals 𝑉 = −
4𝐿

𝜋
𝑒−𝑗𝑘𝐿 Volt. (3p) 

 

A: Use the reaction integral formula, Eq. (4.93) from the book, i.e., 𝑉 = −
1

𝐼
〈𝑬i, 𝑱〉. 

This yields 𝑉 = −
𝑒−𝑗𝑘𝐿

2𝑊
∫ ∫ 𝑐𝑜𝑠 (

𝜋𝑧

2𝐿
)

𝐿

−𝐿

𝑊

−𝑊
d𝑧d𝑥 = −

4𝐿

𝜋
𝑒−𝑗𝑘𝐿 Volt. 

 

 

(c) Compute the received power when the antenna is terminated by a 50 Ohm 

load using the open-circuit voltage given in (b). (3p) 

 

 

A: The equivalent circuit of the receiving antenna is formed by a Thèvenin voltage 

source (=open circuit voltage) with internal impedance 
1

0.01
= 100 Ohm. The current 

through the load 𝐼L = 𝑉/(100 + 50). The dissipated power in the load is therefore 

𝑃L =
1

2
Re(|𝐼L|

250) =
4

225
(
𝐿

𝜋
)
2

Watts. 

 

 

(d) Compute the gain in dBi (numeric value) in the direction of the plane wave. 

(5p) 

 

A: There are several ways to do this. However, the simplest way is not through the 

radiation integral but through formula (2.129) from the book which gives a relation 

for the open-circuit voltage 𝑉 (which we already know, see question 1.2) and the far-

field function. That is, 𝑉 = −
2𝑗𝜆

𝜂𝐼
𝐺𝑧𝐸𝑧

i , with 𝑉 = −
4𝐿

𝜋
𝑒−𝑗𝑘𝐿, 𝐸𝑧

i = 𝑒−𝑗𝑘𝐿, and 𝐼 =

1,⁡from which we find the far field function value 𝐺𝑧 =
2𝐿𝜂

𝜋𝑗𝜆
. The power radiated per 

solid angle in the direction of the plane wave is 𝑃rad =
1

2𝜂
|𝐺𝑧|

2 W/Sr, and the total 

radiated power is 𝑃tot =
1

2
Re(𝑍11)|𝐼|

2 =
Re(𝑍11)

2
= 50⁡Watt. The gain is therefore: 

Gain = 10log
10
(4𝜋𝑃rad/𝑃tot) = 10log

10
(
4𝜂

25𝜋
(
𝐿

𝜆
)
2

) = 10log
10
(1.2) = 0.8 dBi. 
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(e) What could, in general, be the reason for the low gain that was found in (d) 

relative to the standard gain of a 𝜆/2 dipole antenna found in most text books? 

(1p) 

 

A: Ohmic losses generally reduce the gain. Indeed, the real part of the input 

impedance is rather high, i.e. 100 Ohm (normally one expects a value of around 75 

Ohm). So, the remaining loss resistance of approximately 25 Ohm has led to a 

reduced gain. 

 

3.3 Explain whether or not the mutual coupling can be neglected between a 

transmitting antenna and a receiving antenna, the latter of which is placed in the 

far field zone of the transmitting antenna and is known to receive the transmitted 

signal. (2p) 

 

A: The mutual coupling cannot be neglected, otherwise we would not receive any 

signal. In fact, based on the two-port matrix description for a pair of antennas we have 

that the open-circuited Thèvenin voltage source of antenna 2 is 𝑉2 = 𝑍21𝐼1, so if 

𝑍21 = 0 (no mutual coupling), then 𝑉2 = 0, irrespective of the value of 𝐼1⁡at the port 

of the transmitting antenna. 

 

3.4 A microstrip patch antenna in air dielectrics is at resonance and has a width of 𝜆/
4.  

(a) Explain whether the physical patch length is shorter, equal, or longer than 𝜆/
2? (2p) 

 

A: Shorter, because the fringing fields help extending the patch slightly. 

 

(b) Explain by using the magnetic current source model and the image principle 

for computing the far-field pattern of patch antennas what the approximate 

broadside gain of the patch antenna will be. Is it likely to be in the order of 1 − 2 

dBi, 2 − 5 dBi, or 7 − 10 dBi? (3p) 

 

A: The magnetic line current for modeling the fringing fields has an approximate gain 

of around 2 dBi, but we have two of these line currents thus we add 3⁡dB, and we 

have a ground plane so we add another 3 dB, which gives us approximately 8 dBi. 

The approximate range is therefore at least 6 dBi, thus 7 − 10 dBi. 

 

3.5 Consider an 𝑥-polarized incremental electric current source of unit magnitude, i.e., 

𝜂𝐼0𝑙 = 1, placed at an height ℎ above an infinite PEC ground plane at 𝑧 = 0. The 

dipole is in the far-field of the ground plane. Derive an analytical expression for 

the induced electric current in the PEC ground plane (in Cartesian coordinates). 

Hint: compute the dipole radiated field at the ground plane and find the physical 

equivalent electric current by applying appropriate boundary conditions. (5p) 

 

A: The H-field of the incremental dipole source in its far-field is given through Eq. 

(4.66) as: 𝑯dip =
𝐶𝑘

𝜂
(𝒓̂ × 𝒙)

1

𝑟
𝑒−𝑗𝑘𝑟. With the dipole at height h, we have that the 

observation point at the ground plane at 𝑧 = 0, seen from the dipole, is given as 𝒓 =

𝑥𝒙̂ + 𝑦𝒚̂ − ℎ𝒛̂, so that 𝑟 = √𝑥2 + 𝑦2 + ℎ2, and 𝒓̂ = 𝒓/𝑟. The H-field at the ground 
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plane is therefore: 𝑯dip(𝑧 = 0) = −
𝐶𝑘(ℎ𝒚̂+𝑦𝒛̂)

𝜂(𝑥2+𝑦2+ℎ2)
𝑒−𝑗𝑘√𝑥

2+𝑦2+ℎ2. Using the image 

principle, we have at the ground plane the total H-field 𝑯tot(𝑧 = 0) =

−
2𝐶𝑘ℎ𝒚̂

𝜂(𝑥2+𝑦2+ℎ2)
𝑒−𝑗𝑘√𝑥

2+𝑦2+ℎ2. The PEC equivalent current is given through (4.61) as 

𝑱 = 𝒏̂ × 𝑯tot = 𝒛̂ × 𝑯tot =
2𝐶𝑘ℎ𝒙̂

𝜂(𝑥2+𝑦2+ℎ2)
𝑒−𝑗𝑘√𝑥

2+𝑦2+ℎ2. 

 

 

3.6 Provide a reason why field equivalence principles are useful (1p). 

 

A: The problem may be easier to solve when formulating an equivalent field problem.  



Name: 

Exam in the course Antenna Engineering, 2014-06-02 -12- 

 

4.0 Design of a Planar Array (20p) 

 
We have an x-polarized planar slot array antenna with the aperture area of 8𝜆 × 8𝜆, 

where λ is the wavelength at the operating frequency. The element spacing is equal to 

0.75λ in both the x- and y-directions. The elements are resonant slots on an infinite 

ground plane. Assume that the magnitudes of the excitation coefficients are the same. 

 
 

4.1 Sketch your design of the slot planar array along with your coordinate system. 

(2p) 

 

 
 

4.2 Write the expression of the far field function of the isolated single slot element 

on the infinite ground plane. (2p) 

 

From Eq. 5.82, 𝑮𝑠𝑙𝑡(𝒓̂) = 2𝐸𝑜𝜔𝑮𝑖𝑚𝑔(𝒓̂)𝑀̃(𝑘𝒚̂ ∙ 𝒓̂̂) 
 

the far-field function of the isolated single slot element is a product of three 

factors: (1) the factor 2𝐸𝑜𝜔, (2) the far-field function 𝑮𝑖𝑚𝑔 = 𝐶𝑘(𝒚̂ × 𝒓̂̂) =

𝐶𝑘[cos 𝜑𝜃 − cos 𝜃 sin𝜑 𝜑̂] of a unit incremental y-directed magnetic current 

source and (3) the Fourier transform of the magnetic current distribution 

𝑀̃(𝑘𝒚̂ ∙ 𝒓̂̂) = ∫ cos(𝜋𝑦´ 𝑙⁄ )𝑒𝑗𝑘𝑦
´⁡𝒚̂∙𝒓̂̂⁡𝑙 2⁄

−𝑙 2⁄
𝑑𝑦´.  

 

 

4.3 The maximum radiation direction of the array should be at (𝜃0, 𝜑0) =
(30𝑜 , 90𝑜). Calculate the linear phase progression of the element excitations. 

(3p) 

 

The linear phase progression for the planar array can be computed from the 

expressions for the propagation constants of the phase excitation (Eq. 10.67 

from the book): 

𝑘Φ𝑥
= −

ΔΦ𝑥

𝑑𝑥
     and  𝑘Φ𝑦

= −
ΔΦ𝑦

𝑑𝑦
 

and the relationships between the propagation constants and the maximum 

radiation direction (Eq. 10.75 in the book): 
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sin 𝜃𝑜 = √(𝑘Φ𝑥
)
2
+ (𝑘Φ𝑦

)
2

𝑘⁄   and  tan𝜙𝑜 = 𝑘Φ𝑦
𝑘Φ𝑥
⁄ . 

 

Since 𝜑0 = 90𝑜 and  𝜃0 = 30𝑜,    ⁡𝑘Φ𝑥
= 0⁡and 𝑘Φ𝑦

= 𝑘⁡sin𝜃𝑜, and hence 

ΔΦ𝑥 = 0  and  ΔΦ𝑦 = −0.75𝜋 = −⁡2.36⁡[𝑟𝑎𝑑] = ⁡−135⁡𝑜. 

 

4.4 Calculate the directivity of the array antenna and its 3dB beamwidths in both 

the E- and H-planes. (3p) 

 

The directivity of the array antenna can be determined by using the following 

formula (Eq. 10.87 from the book): 

 

𝐷 = 𝜖𝑔𝑟𝑡 cos 𝜃𝑜𝜖𝑝𝑜𝑙𝜖𝑖𝑙𝑙𝐷𝑚𝑎𝑥,  

 

where the maximum available directivity can be found from the given element 

spacing and the number of elements N=11. 

𝐷max⁡=
4𝜋

𝜆2
𝐴 =

4𝜋

𝜆2
(𝑁𝑑)2 = 29.32 [dBi] . 

 

Since the magnitudes of the excitation coefficients are the same, the aperture 

illumination efficiency can be assumed to be equal to 1. Also, the polarization 

efficiency can be assumed to be equal to 1 since the slots are infinitely thin 

and in the plane of scan do not exhibit significant cross-polarization. From the 

given direction of maximum radiation, we can compute cos 𝜃𝑜 = cos 30𝑜 =
0.866 = −0.6247 [dBi].  

 

Now, the only unknown factor in the expression of the directivity is the 

grating-lobe efficiency. It can be computed from Eq. 10.91 in the book: 

 

𝜖𝑔𝑟𝑡 =
|𝐺(𝜃𝑜⁡,𝜑𝑜)|

2

∑ |𝐺(𝜃𝑝𝑞⁡,𝜑𝑝𝑞)|
2 cos𝜃𝑜
cos𝜃𝑝𝑞

𝑝𝑞

, where 𝐺(𝜃𝑜 , 𝜑𝑜) = 𝐴𝐹(𝜃𝑜 , 𝜑𝑜)𝐺𝑒𝑙(𝜃𝑜 , 𝜑𝑜) and 

 

where 𝐴𝐹(𝜃𝑜 , 𝜑𝑜) is the array factor in the direction of the main beam, and 

𝐺𝑒𝑙(𝜃𝑜 , 𝜑𝑜) is the far-field function of the array antenna element. 

 

Now, we will check whether the grating lobes exist in direction p by 

determining the grating lobe corresponding maxima: 
 

sin 𝜃𝑝 cos𝜑𝑝 = sin 𝜃𝑜 cos𝜑𝑜 + 𝑝
𝜆

𝑑𝑥
. 

For (𝜃0, 𝜑0) = (30𝑜 , 90𝑜) and 𝑝 = ±1⁡(𝑞 = 0), cos𝜑𝑝 = cos 0 = 1, and 

grating lobe appears at sin 𝜃𝑝 =
±1

0.75
. Hence, there are no grating lobes in the 

visible region in direction p. 

 

Similarly, we will check whether the grating lobes exist in direction q by 

determining the grating lobe corresponding maxima: 
 

sin 𝜃𝑞 sin𝜑𝑞 = sin 𝜃𝑜 sin𝜑𝑜 + 𝑞
𝜆

𝑑𝑦
. 
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For (𝜃0, 𝜑0) = (30𝑜 , 90𝑜) and 𝑞 = ±1⁡(𝑝 = 0), this becomes sin 𝜃𝑞 = 1 +
±1

0.75
. sin 𝜃𝑞 = −0.833  corresponds to the grating lobe in the visible region. 

The maximum of this grating lobe is at 𝜃𝑞 = −56.44𝑜. 

 

Now, we can compute the grating lobe efficiency: 

 

𝜖𝑔𝑟𝑡 =
|𝐺(𝜃𝑜,𝜑𝑜)|

2

|𝐺(𝜃𝑜,𝜑𝑜)|2+∑ |𝐺(𝜃𝑝𝑞⁡,𝜑𝑝𝑞)|
2 cos𝜃𝑜
cos𝜃𝑝𝑞

𝑝𝑞

=
1

1+
cos𝜃𝑜
cos𝜃𝑝𝑞

= 0.39 = −4.09⁡[𝑑𝐵𝑖], 

where we have assumed that the far-field function of the array antenna 

element 𝐺𝑒𝑙(𝜃𝑜 , 𝜑𝑜) is an omni-directional function. 

 

By using the results obtained above, we can find the directivity of the planar 

array 

𝐷 = (−4.09 + 0 + 0 − 0.6247 + 29.32) = 24.6⁡[𝑑𝐵𝑖]  
 

The 3dB beamwidths in the E- and H-planes can be obtained from the 

approximate formulas for the rectangular aperture antennas, where we have 

accounted for the beamwidth factor 1/cos 𝜃𝑜 increase in the plane of scanning 

(see Eq. 10.67 in the book): 

 

In the E-plane (𝜑 = 0𝑜):  ∆𝜃3𝑑𝐵 = 2⁡𝑎𝑟𝑐𝑠𝑖𝑛⁡ (
0.445𝜆

𝑁𝑑
) = 6.20 

In the H-plane (𝜑 = 90𝑜):  ∆𝜃3𝑑𝐵 = 2⁡𝑎𝑟𝑐𝑠𝑖𝑛⁡ (
0.445𝜆

𝑁𝑑 cos(30𝑜)
) = 70 

 

 

4.5 Now the directivity does not fulfil the system specification requirements. The 

directivity should be improved. Without changing the size of the array, please 

re-design your array, and re-calculate the directivity of your newly designed 

array. (3p) 

 

Since the size of the array and specified scan directions are fixed, we can only 

change the element spacing.  

 

To determine the required element spacing that assures no grating lobes when 

scanning in direction (𝜃0, 𝜑0) = (30𝑜 , 90𝑜), we can use the earlier given 

formula the grating lobe corresponding maxima  

sin 𝜃𝑞 sin𝜑𝑞 = sin 𝜃𝑜 sin𝜑𝑜 + 𝑞
𝜆

𝑑𝑦
. 

For 𝑞 = −1, sin𝜑𝑞 = 90𝑜, sin 𝜃𝑜 = 30𝑜 and  sin 𝜃𝜑𝑜 = 90𝑜, we have 

−sin 𝜃𝑞 = sin 𝜃𝑜−
1

𝑑𝑦
. Hence, for no grating lobes, we need to satisfy the 

following conditions: 
1

2
−

1

𝑑𝑦
≥ 1. This leads to 𝑑𝑦 ≤ 0.67𝜆. 

 

Alternatively, one can determine the required element spacing that assures no 

grating lobes in the visible region, we can use the following formulas 

𝑑𝑦 ≤
𝜆

1 + |sin 𝜃𝑜| + 𝜆 𝐷⁄
 

For 𝜃0 = 30𝑜, this becomes 𝑑𝑦 ≤ 0.62𝜆 
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4.6 Now the maximum radiation direction should be steered to (𝜃0, 𝜑0) =
(30𝑜 , 45𝑜). Calculate the linear phase progression of the element excitations. 

(4p) 

 

From Eq. 10.67 and Eq. 10.75 in the book, we can calculate the linear phase 

progression corresponding to the maximum radiation direction (𝜃0, 𝜑0). 
 

𝑘Φ𝑥
= −

ΔΦ𝑥

𝑑𝑥
     and  𝑘Φ𝑦

= −
ΔΦ𝑦

𝑑𝑦
 

where  

sin 𝜃𝑜 = √(𝑘Φ𝑥
)
2
+ (𝑘Φ𝑦

)
2

𝑘⁄   and  tan𝜙𝑜 = 𝑘Φ𝑦
𝑘Φ𝑥
⁄ . 

 

Since 𝜑0 = 45𝑜 and  𝜃0 = 30𝑜, sin 𝜃𝑜 = 1 2⁄  and tan𝜙𝑜 = 1. Hence,  

𝑘Φ𝑥
= 𝑘Φ𝑦

=
𝑘

2√2
,  

and ΔΦ𝑥 = ΔΦ𝑦 = −𝑑𝑦𝑘Φ𝑦
= −0.75

𝜋

√2
= −1.66⁡[𝑟𝑎𝑑] = ⁡−95⁡𝑜. 

 

 

4.7 Explain how to determine the embedded element impedance, the scan 

impedance, and the isolated element impedance of an antenna array element. 

(3p) 

 

The embedded element impedance is determined when the other array 

elements are in place and match terminated, the scan impedance is determined 

when the other array elements are in place and excited, and the isolated 

element impedance is determined when the other elements are not present. 

 


