SSY080

Transformer, Signaler och System

Examiner: Silvia Muceli muceli@chalmers.se

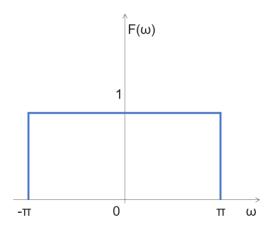
Date: 29/10/20, Time: 4 h (8.30-12.30)

Grading system

10 Quest A	1 point each	10 points in total	5/10 necessary to pass		
3 Quest B	5 points each	15 points in total	7/15 necessary to pass		

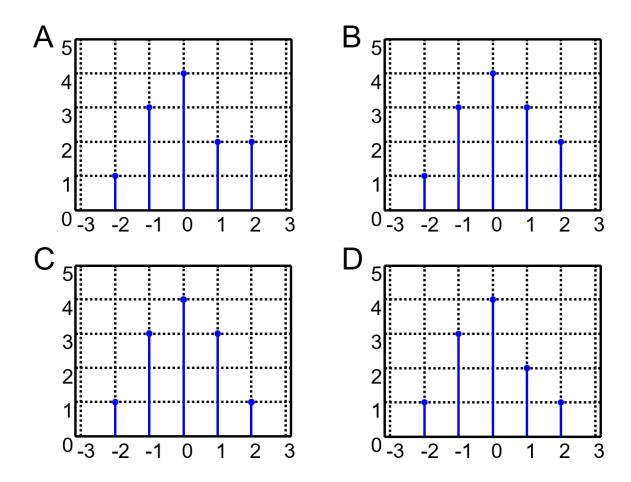
Note: only a **complete answer** results in the **full point** (A) / **points** (B).

Points	[12,16)	[16-21)	[21-25]
Final grade	3	4	5

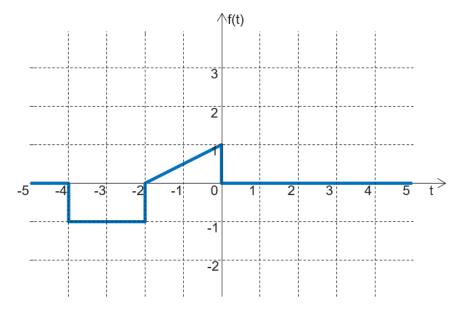

At the top of the first page, report which questions you have answered (e.g. A1, A3, A10, B2).

All answers must be written in **English**.

The solutions must be complete and easy to follow.

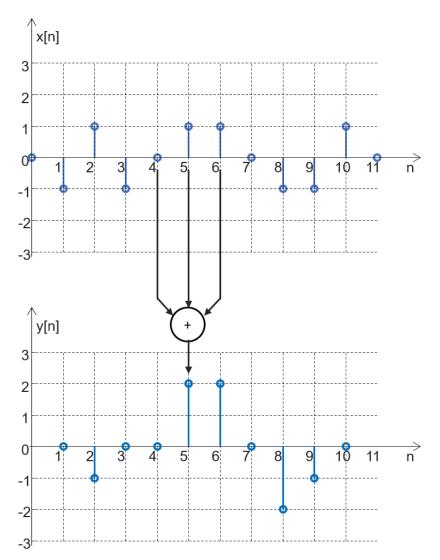

You can either write by hand or on a computer.

A1. Given a signal f(t) with Fourier transform $F(\omega)$ sketched in the following figure

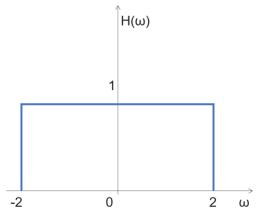


Determine the minimum sampling frequency to recover f(t) from its samples. Motivate your answer.

A2. Given the two sequences $x_1[n] = \delta[n+1] + 2\delta[n] + \delta[n-1]$ and $x_2[n] = u[n+1] - u[n-2]$, determine the convolution $x[n] = x_1[n] * x_2[n]$. One of the 4 options (A, B, C, D) is correct. Motivate your answer.



A3. Given the signal f(t) in the figure


Plot the signal y(t)=f(2t-2). Motivate your answer.

A4. The figure represents the input x[n] and the output y[n] of a system. Is the system causal? Motivate your answer.

A5. Given a LTI system with

- input x(t)=cos(t)+sin(5t)
- and impulse response h(t) with $H(\omega) = \Im\{h(t)\}$ and \Im indicating the Fourier transform

Which of the following options correspond to the system output y(t)?

- A. $y(t) = \alpha \cos(t) + \beta \sin(5t)$ B. $y(t) = \alpha \cos(t)$
- C. $y(t) = \beta \sin(5t)$

with α and β constant and \neq 0. Motivate your answer.

A6. Plot the signal $x[n] = (u[n+1] - u[n-1])\delta[n]$, and determine its simplified analytical expression. Motivate your answer.

A7. Given the signal x(t) = sinc(t), with $sinc(t) = \frac{\sin t}{t}$ determine which of the following options corresponds to y(t) = sinc(t) * sinc(t) * ... * sinc(t), where * is the convolution operator. n times

Motivate your answer.

A.
$$y(t) = \pi^n sinc(t)$$

B. $y(t) = \pi^{n-1} sinc(t)$
C. $y(t) = (sinc(t))^{n-1}$
D. $y(t) = (sinc(t))^n$

A8. Consider the following difference equation of a system with x[n] as input and y[n] as output.

$$y[n] - 0.9y[n - 1] = 0.1x[n]$$

Find the transfer function H[z] using the z-transform.

A9. Given the signal

$$x(t) = \sum_{n=-\infty, n \text{ odd}}^{+\infty} (u(t-2n) - u(t-2n-1))$$

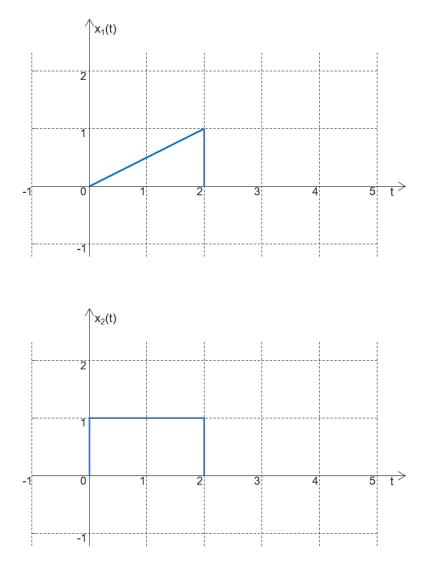
determine if it is periodic (Y/N). Motivate your answer. In case it is, determine the fundamental period T_0 .

A10. Given a system with transfer function $H(s) = \frac{1}{s+1}$, determine if the system is stable. Motivate your answer.

B1. Consider the LTI system described by the following differential equation

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t)$$

x(t) is the system input and y(t) the system output.


Find the unit step response.

Report the calculation to motivate your answer.

- **B2.** Given the signal $x(t) = sin(3t) + 4\cos(9t)$,
 - a. Determine the fundamental frequency ω_0
 - b. Determine the coefficients c_k of the complex Fourier series

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t}$$

B3. Compute and plot the convolution between $x_1(t)$ and $x_2(t)$.

