Written examination in

PPU080 - Advanced Computer Aided Design

Date: 2015-10-30, 8.30 – 12:30

Teacher: Lars Lindkvist

Questions: Lars Lindkvist, phone 7728616 **Department:** Product and Production Development

Solution to the exam: On the course home page the day after the exam. **Preliminary results:** On the course home page before 2015-11-20

Inspection of your exam result (at Lars Lindkvists office):

2015-11-23, 12.00-13.002015-11-25, 12.00-13.00

Aids

A Chalmers-approved calculator is permitted.

The examination contains 5 tasks, each worth 10 points. Grades:

< 20 points: Fail 20-29 points: Grade 3 30-39 points: Grade 4 40-50 points: Grade 5

Do not treat more than one task on each page.

1. Geometry modeling

- a) Describe the steps necessary to create a solid, using surface modeling, in a modern CAD system. (5p)
- b) What do C^0 , C^1 and C^2 continuity between two curve segments mean? (2p)
- c) What characterizes a feature (in the geometry modeling context)? (3p)

Answers

a)

- Create wireframe elements (points, lines, planes, curves) in 3D or sketches
- Create surfaces from the wireframe geometries (sweep, revolve, ...)
- Trim the surfaces together
- Join the surfaces together to a uniform element
- Transform into a solid (Thick, Closed Surface, ...)
- (Add fillets)

b)

C⁰-continuity Two curve segments are joined without constraints C¹-continuity
The curve segments
have the same direction
at the common point

C²-continuity
The curve segments have the same curvature at the common point

c)

- A feature
 - o is a physical part of a detail
 - o can be linked to a generic form
 - has a specific engineering role (function, manufacturing method, simulation method, ...)
 - o has predictable properties

2. Geometry assurance

- a) In order to perform a 3D variation analysis a 3D assembly model is needed. Describe the necessary components and inputs for a 3D assembly model. (6p)
- b) How does *contribution analysis* work and for what is it used? (4p)

Answers

a)

A 3D assembly model consist of:

- Parts
- Subassemblies
- Positioning systems
- Input tolerances with range and type of distribution
- Critical measures

b)

Model consist of:

- 3D assembly model with defined locating schemes
- Input tolerances with range and type of distribution
- Critical measures

Simulation:

- All input parameters are varied (one at the time) within their tolerances on 3 levels
- Max output is registered for all measures
- % contribution_i = $100 \frac{\Delta output_i^2}{\sum_{i=1}^{n} \Delta output^2}$ • Contribution is calculated in percent as

It is used to calculate a ranked list of how all input tolerances contributes to the variation in the critical measures

3. Computer graphics and virtual reality

- a) Bump-mapping is a way of using textures to give a smooth surface an irregular appearance. Describe how it works. (2p)
- b) Gouraud and Phong are two methods for rendering over multiple polygon surfaces. Describe how they work. (4p)
- c) Describe how a *shadow buffer* can be used to create shadows. (4p)

Answers

a)

- It works by modifying the surface normal that is used in the illumination model.
- The value of the modification is obtained from a texture.
- The color (RGB value) of each pixel indicates the surface normal modification.

b)

Gourad:

- Calculate normal vector for all polygon surfaces
- Calculate "mean normal vectors" for the vertices of the polygon
- Mean normal + Illumination model => calculation of intensities (colors) in the vertices
- Intensity values are interpolated line by line over the polygon

Phong:

- Calculate normal vector for all polygon surfaces
- Calculate "mean normal vectors" for the vertices of the polygon
- Surface normals are interpolated line by line over the polygon
- Surface normal + Illumination model => calculation of intensities (colors) in each pixel

- Create a buffer, corresponding to the depth buffer, containing the distance from the light source to the closest surface
- When drawing the point P on a surface:
 - o Find the corresponding position in the shadow buffer for the point that is being drawn
 - o Compare the value in the shadow buffer with the distance from the light source to P
 - o If the value is less than the distance: draw only with ambient light

4. Use of geometry data

- a) Mention three benefits of using virtual product models in the product realization process (3p)
- b) Mention two advantages of using off-line programming. (2p)
- c) Geometry models, created in a CAD-system, are used by a number of different functions (departments etc.) within the product development process. Describe some problems related to this. (2p)
- d) What is a digital mockup (DMU) and for what is it used? (2p)
- e) What type of geometry representation is usually used in a digital mockup (DMU)? (1p)

Answers

a)

- Minimizing the need for costly physical prototypes
- Finding problems as early as possible in the development process (easier and cheaper to fix)
- Faster development process with efficient tools (time to market)

b) (two of)

- Avoid costly mistakes with real machines
- Faster and more efficient programming
- Possibility to make new programs without stopping the production

c)

- Different functions uses different software requiring different file formats: problem with file conversion
- Problem with access to the right models

d)

- Special type of component based assembly model developed to be able handle large assemblies (> 1000 parts) from different CAD-systems
- Can be used for e.g. packaging studies and assembly simulation but not for e.g. calculation of mass etc.

The NURBS-geometry from the CAD-system is simplified to a triangulated surface model => large reduction in size

5. Miscellaneous

- a) Mention the five basic needs of engineering information management. (5p)
- b) What is the aim of a PLM system? (2p)
- c) What are the tree types of modeling components in a multi-body system dynamic simulation? (3p)

Answers

a)

- Capture information at the source
- Organize information
- Distribute the information when, where, what, to whom
- Search, re-use and present information
- Secure storage of information over a long time

b)

PLM systems aim to support the creation and management of all information related to a product throughout its lifecycle.

c)

- Rigid bodies
- Constraints (joints, motions)
- Forces (gravity, spring/dampers, friction etc.)