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1. (a) We get

π(data | τ) =

3∏
i=1

Normal(xi; 4, 1/τ)

=
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)3
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))
∝τ τ
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(
1.72 + 1.12 + 3.92

))
= τ3/2 exp(−9.655τ).

This means that the likelihood π(data | τ) is proportional to the probability density
Gamma(τ; 5/2, 9.655).

(b) To compute this probability you need to find the posterior predictive probability. To
find this, you first need to find a posterior for τ, and this means you need to assume
some prior. A choice corresponding with the computation in (a) is to choose a flat
prior on the positive real values as a prior: With such a prior, the posterior becomes
Gamma(τ; 5/2, 9.655).
The posterior predictive then becomes

π(x | data) =
∫ ∞

0
Normal(x; 4, 1/τ) Gamma(τ; 5/2, 9.655) dτ

and the required probability can be computed as∫ ∞

8
π(x | data) dx.

(One may provide more detail in several ways: One is to write∫ ∞

8

∫ ∞

0
Normal(x; 4, 1/τ) Gamma(τ; 5/2, 9.655) dτ dx

=

∫ ∞

0

[∫ ∞

8
Normal(x; 4, 1/τ) dτ

]
Gamma(τ; 5/2, 9.655) dx

and note that this can be computed in R as a numerical integral of



(1-pnorm(8,4,1/sqrt(tau)))*dgamma(tau, 5/2, 9.655).

Another is to compute

π(x | data) =
∫ ∞

0
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) 9.6555/2

Γ(5/2)
τ3/2 exp(−9.655τ) dτ

=
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√
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∫ ∞

0
τ3−1 exp
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=
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·
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(9.655 + (x − 4)2/2)3 .

A third is to express this integral as a non-centered t-distribution.)

(c) A simple procedure is to use gridding: Make a uniform 2D grid for µ in the interval
[2, 6] and τ in the interval [0.1, 10], for example with 100 grid points in each direction,
for a total of 10000 grid points. Then compute the likelihood function

π(data | µ, τ) =
3∏

i=1

Normal(xi; µ, 1/τ)

in each grid point, and normalize so that the values sum to 1. Then compute the sum
at the grid points where µ > 4.

2. (a) We get for the probability generating function

GX(s) = 0.1 + 0.5s + 0.4s2

and then

GX(s) − s = 0.1 · (1 + 5s + 4s2) − s
= 0.1 · (1 − 5s + 4s2)
= 0.1 · (s − 1)(4s2 + 4s − 1)
= 0.1 · (s − 1) · 4 · (s + 1/2 +

√
2/2)(s + 1/2 −

√
2/2)

We see from this that the smallest positive root of GX(s) = s, and thus the probability
of extinction, is

√
2/2 − 1/2.

(b) We get

GW(s) = E(sW) = E(E(sW | Y)) = E
(
E

(
s
∑Y

i=1 Xi | Y
))

= E

E  Y∏
i=1

sXi | Y)

 = E

 Y∏
i=1

E(sXi)

 = E
(
GX(s)Y

)
= GY(GX(s))



(c) By considering two consecutive generations as one generation, we see that the branch-
ing process can be viewed as a standard branching process with offspring process
given by W. We also have

GW(s) = GY(GX(s)) = GY(0.1 + 0.5s + 0.4s3) = exp(0.5s + 0.4s3 − 0.9).

To find the smallest positive root of GW(s) we can apply for example the R function
uniroot to

f (s) = exp(0.5s + 0.4s3 − 0.9) − s

on the interval [0, 1].

3. (a) • Stationary increments: For all s, t > 0 Nt+s − Ns has the same distribution as Nt.
• Independent increments: For 0 ≤ q < r ≤ s < t, Nt − Ns and Nr − Nq are

independent.

(b) For any t > 0 we have that

Pr[T > t] = Pr[Nt = 0] = e−tλ,

using the probability mass function for the Poisson. Thus

Pr[T ≤ t] = 1 − e−tλ

and taking derivative we get for the probability density for T

π(T ) = λe−tλ.

Comparing with the density for the exponential distribution, we get T ∼ Exponential(λ).

(c) As the winning of grand prices is a Poisson process and such processes have station-
ary increments, we can ignore the first hour and start the Poisson process at the start
of the second hour. The required probability is the probability of two or more grand
prices during this hour divided by the probability of one or more grand prices during
this hour. If (Nt)t≥0 is the Poisson process for grand prices, this can be computed as

Pr[N1 ≥ 2]
Pr[N1 ≥ 1]

=
1 − Pr[N1 = 0] − Pr[N1 = 1]

1 − Pr[N1 = 0]
=

1 − e−0.01λ(1 + 0.01λ)
1 − e−0.01λ ,

4. (a) From the expected holding times we get that (q1, q2, . . . , q5) = (1/3, 1/2, 1, 1, 1/2).
Using P̃ we can now compute the generator matrix as

Q =


−1/3 1/3 0 0 0
1/2 −1/2 0 0 0
0 0 −1 1/2 1/2
0 0 1/2 −1 1/2
0 0 1/4 1/4 −1/2

 .



We then get
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proving that v is a stationary distribution.

(b) v cannot be a limiting distribution, as this Markov chain has no limiting distribution.
The reason is that it is reducible, it has the two closed communication classes {1, 2}
and {3, 4, 5}. The most direct proof that the chain does not have a limiting distribution
is to observe that the state when t → ∞ depends on the starting state: It cannot move
out of the communication class it starts in.

(c) When N0 = 3, we know that the chain starts in the second communication class.
Restricting the Markov chain to this class, it has generator matrix

Q′ =

−1 1/2 1/2
1/ −1 1/2
1/4 1/4 −1/2

 .
We have seen above that (1/14, 1/14, 1/7)Q′ = 0. Normalizing so that this vector is
a probability vector, we get that v′ = 14/4 · (1/14, 1/14, 1/7) = (1/4, 1/4, 1/2) is the
unique limiting distribution for the restricted chain. Thus

lim
t→∞

Pr[Nt = 3 | N0 = 4] = 1/4.

5. (a) Let Z denote the outcome of a single round. Then

E(Xi) = i E(Z) = i
(
9 ·

1
10
− 1 ·

9
10

)
= 0

and

Var(Xi) = i Var(Z) = i(E(Z2) − E(Z)2) = i E(Z2) = i
(
92 ·

1
10
+ 1 ·

9
10

)
= 9i.

(b) We get Var(Yi) = a2 Var(Xi) = a29i, so setting a = 1/3 will lead to Var(Yi) = i.

(c) When i is large, Yi behaves approximately like Brownian motion Bt with t = i.

(d) The maximum value of a Brownian motion on the interval [0, 10000] can be written
M10000 where we know from theory that M10000 has the same distribution as |B10000|.
But B10000 is normally distributed with expectation 0 and variance 10000, i.e., stan-
dard deviation

√
10000 = 100. Using the hint, we know that B10000 is in the interval

[−196, 196] with 95% probability, so that

Pr[M10000 < 196] = Pr[|B10000| < 196] = 0.95.

Thus, approximately, the maximum value of Yi is below 196 with 95% probability
during 10000 played rounds, so that the maximum value of Xi is below 3 · 196 = 588
with 95% probability during 10000 played rounds.


