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1. (a) Assume that we use the prior p ∼ Beta(α, β) so that

π(p) =
Γ(α + β)
Γ(α)Γ(β)

pα−1(1 − p)β−1.

To prove conjugacy we need to prove that the posterior is then also a Beta distribution.
We get

π(p | x) ∝p π(x | p)π(p)

∝p

(
x + r − 1

x

)
· (1 − p)x pr pα−1(1 − p)β−1

∝p pα+r−1(1 − p)β+x−1

∝p Beta(p;α + r, β + x)

which shows that the posterior is a Beta distribution.

(b) Note that the Uniform distribution on [0, 1] is the same as a Beta(1, 1) distribution.
So using α = 1 and β = 1 and repeated Bayesian update of the parameter, we get the
posterior

π(p | data) = Beta(1 + 4 + 4 + 4, 1 + 4 + 2 + 3) = Beta(13, 10).

2. (a) First of all, for the purposes of this question, we may change the Markov chain by
removing states above 7 and making state 7 into an absorbing state: This is OK
because once the chain reaches state 7 it will never again return to lower states.
Let P be the transition matrix of this simplified chain:

P =



0 0.2 0.8 0 0 0 0
0.8 0 0.2 0 0 0 0
0 0.8 0 0.2 0 0 0
0 0 0 0.8 0.2 0 0
0 0 0 0.8 0 0.2 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


Then the required probability is (P9)14(P5)46. This can be computed in R with



matrixpower(P, 9)[1,4]*matrixpower(P, 5)[4,6]

provided matrixpower computes the power of a matrix. We might also write this
out as a matrix product

v1PPPPPPPPPvt
4v4PPPPPvt

6

where

v1 =
[
1 0 0 0 0 0 0

]
v4 =

[
0 0 0 1 0 0 0

]
v6 =

[
0 0 0 0 0 1 0

]
.

(b) The communication classes are {1, 2, 3}, {4, 5}, {6}, {7}, {8}, {9}, . . . . They are all
open, and all states are transient, as for any states there is a nonzero probability that
one will never return to this state.

(c) Making state 6 absorbing, we get

Q =


0 0.2 0.8 0 0

0.8 0 0.2 0 0
0 0.8 0 0.2 0
0 0 0 0.8 0.2
0 0 0 0.8 0


and the answer is given by the sum of the first row of the fundamental matrix F =
(I − Q)−1. In R we might write

sum(solve(diag(5)-Q)[1,])

A mathematical way to write this might be

[1 0 0 0 0](I − Q)−1


1
1
1
1
1

 .

3. (a) If X is a random variable with the offspring distribution have that µ = E [X] = 0 · (1−
a)+ 1 · 0+ 2 · a = 2a. We compare this number with 1, and conclude that the process
is critical if a = 1/2, supercritical if a > 1/2, and subcritical if a < 1/2.

(b) The expected size is
µn = (2a)n.



(c) We first find the probability generating function:

G(s) = (1 − a)s0 + 0s1 + as2 = 1 − a + as2.

Then we know that the extinction probability is the smallest positive root of G(s) = s.
We get (using that we know s = 1 is always a root)

1 − a + as2 = s
as2 − s + 1 − a = 0

(s − 1)(as + a − 1) = 0.

As as + a − 1 = 0 solves to
s =

1 − a
a
=

1
a
− 1,

we see that if a ≤ 1/2 the extinction probability is 1, while if a > 1/2 the extinction
probability is 1/a − 1.

(d) Let X be the original number of offspring and Y be the offspring from the Poisson
process. Then

G(s) = E
[
sX+Y

]
= E

[
sX

]
E

[
sY

]
= (1 −

2
3
+

2
3

s2)
∞∑

k=0

ske−2 2k

k!

=

(
1
3
+

2
3

s2
)

e−2
∞∑

k=0

(2s)k

k!

=
1 + 2s2

3
e2e2s =

1
3

(1 + 2s2)e2(s−1)

We want to find the smallest positive root of G(s) = s, so we study

f (s) =
1
3

(1 + 2s2)e2(s−1) − s.

As E [X + Y] = 4
3 + 2 > 1 and the process is supercritical we know f (s) will have a

root in the interval (0, 1). In R one may use for example the function uniroot, on
the function f (s), making sure to aviod the root s = 1.

4. (a) We can compute

E [N2N4] = E [N2(N4 − N2 + N2)]
= E

[
N2(N4 − N2) + N2

2

]
= E [N2] E [N4 − N2] + E

[
N2

2

]
= E [N2] E [N2] + Var [N2] + E [N2]2

As N2 ∼ Poisson(2λ) we have from the appendix that E [N2] = 2λ and Var [N2] = 2λ,
so the answer becomes

E [N2N4] = (2λ)2 + 2λ + (2λ)2 = 8λ2 + 2λ.



(b) As X2 ∼ Exponential(λ) and independently X4 ∼ Exponential(λ) we get E [X2X4] =
E [X2] E [X4] = 1

λ2 .

(c) A uniformly selected arrival has a uniform distribution on [0, 4]. Its expected value
is thus 4/2 = 2.

5. (a) We get

Q =


−25/3 4 2 4/3 1

1/4 −1/4 0 0 0
1/2 0 −1/2 0 0
3/4 0 0 −3/4 0
1 0 0 0 −1


(b) As the Markov chain is a finite irreducible continuous-time Markov chain it has a

unique stationary distribution which is the limiting distribution. This implies that as
t → ∞ the state it is in becomes independent of the starting state.

(c) We solve the system

v


1 4 2 4/3 1
1 −1/4 0 0 0
1 0 −1/2 0 0
1 0 0 −3/4 0
1 0 0 0 −1

 = [1 0 0 0 0]

were we write v = [v0, v1, v2, v3, v4]. We quickly get the equations

v1 = 16v0

v2 = 4v0

v3 =
16
9

v0

v4 = v0

Together with the equation v0 + v1 + v2 + v3 + v4 = 1 we get v0 =
9

214 , so the answer
is 9

214 .

(d) We see directly that the transition rate graph is a star in this case, i.e., a tree, so the
Markov chain is necessarily time reversible.

6. (a) A process Gt is geometric Brownian motion if there are parameters G0, µ, and σ so
that

Gt = G0etµ+σBt

where Bt is Brownian motion.



(b) We get

E(Gt) = E(G0etµ+σBt)
= G0etµE(eσBt)

= G0etµ
∫ ∞

−∞

eσs 1
√

2πt
exp

(
−

1
2t

s2
)

ds

= G0etµ 1
√

2πt

∫ ∞

−∞

exp
(
−

1
2t

(s2 − 2σts)
)

ds

= G0etµ 1
√

2πt

∫ ∞

−∞

exp
(
−

1
2t

(s − σt)2 + t
σ2

2

)
ds

= G0etµetσ2/2
∫ ∞

−∞

1
√

2πt
exp

(
−

1
2t

(s − σt)2
)

ds

= G0et(µ+σ2/2)


