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1. (a) Assume that we use the prior p ~ Beta(a, §) so that
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To prove conjugacy we need to prove that the posterior is then also a Beta distribution.

We get
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which shows that the posterior is a Beta distribution.

(b) Note that the Uniform distribution on [0, 1] is the same as a Beta(1, 1) distribution.
Sousing @ = 1 and B = 1 and repeated Bayesian update of the parameter, we get the
posterior

n(p | data) = Beta(1 +4 +4+4,1+4+ 2+ 3) = Beta(13, 10).

2. (a) First of all, for the purposes of this question, we may change the Markov chain by
removing states above 7 and making state 7 into an absorbing state: This is OK
because once the chain reaches state 7 it will never again return to lower states.

Let P be the transition matrix of this simplified chain:

(0 02 08 0 0 O O
08 0 02 0 0 0 O
0 08 0 02 0 0 O
P={0 0 0 08 02 0 0
0 0 0 08 0 02 0
0 0 0 0 0 0 1
o 0 0 0 0 O 1

Then the required probability is (P?);4(P°)4. This can be computed in R with



(b)

(c)

(a)

(b)

matrixpower(P, 9)[1,4]*matrixpower(P, 5)[4,6]

provided matrixpower computes the power of a matrix. We might also write this
out as a matrix product

viPPPPPPPPPV,v4PPPPPV

where
vi = [1 00000 0
vi = (000100 0
ve = (00000 10
The communication classes are {1, 2,3}, {4,5}, {6}, {7}, {8}, {9}, .... They are all

open, and all states are transient, as for any states there is a nonzero probability that
one will never return to this state.

Making state 6 absorbing, we get
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and the answer is given by the sum of the first row of the fundamental matrix F =
(I — Q)7'. In R we might write

sum(solve(diag(5)-Q)[1,]1)

A mathematical way to write this might be

1
1

[1 00 0 0JU-0O)'|1].
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If X is a random variable with the offspring distribution have that u = E[X] =0-(1 —
a)+1-0+2-a=2a. We compare this number with 1, and conclude that the process
is critical if a = 1/2, supercritical if @ > 1/2, and subcritical if a < 1/2.

The expected size is
u' = a)".
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We first find the probability generating function:
G(is)=(1-a)s"+0s' +as’> =1-a+as’.

Then we know that the extinction probability is the smallest positive root of G(s) = s.
We get (using that we know s = 1 is always a root)
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Asas+a—1=0solves to
1-a 1
== 1,
a a

we see that if @ < 1/2 the extinction probability is 1, while if a > 1/2 the extinction
probability is 1/a — 1.
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Let X be the original number of offspring and Y be the offspring from the Poisson
process. Then

G(s) = E[s""]=E[s*|E[s"]
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We want to find the smallest positive root of G(s) = s, so we study
1
flo) =31+ 25D — s

AsE[X+Y] = % + 2 > 1 and the process is supercritical we know f(s) will have a
root in the interval (0, 1). In R one may use for example the function uniroot, on
the function f(s), making sure to aviod the root s = 1.

We can compute
E [N2N4] N2(Ny — N2 + N7)]

E[
E [Na(Ny = No) + N3
E[

E[

N>]E [N, — N] +E[N2]
N,]E[N,] + Var [N,] + E [N,]2

As N, ~ Poisson(21) we have from the appendix that E [N,] = 24 and Var [N,] = 24
so the answer becomes

E[N>Ny] = )% + 21+ (22)* = 82> + 2.



(b) As X, ~ Exponential(4) and independently X, ~ Exponential(1) we get E [X,X,] =
E[X;]E[X,] = +.

(c) A uniformly selected arrival has a uniform distribution on [0, 4]. Its expected value
is thus 4/2 = 2.

(a) We get
-25/3 4 2 4/3 1
1/4 -1/4 O 0 0
o=\ 1/2 0o -1/2 0 0
3/4 0 0 -3/4 0
1 0 0 0 -1

(b) As the Markov chain is a finite irreducible continuous-time Markov chain it has a
unique stationary distribution which is the limiting distribution. This implies that as
t — oo the state it is in becomes independent of the starting state.

(c) We solve the system

4 2 4/3 1
-1/4 0 0 0
0o -1/2 0 O(=[1 0 0 0 O]
0 0 -3/4 0
0 0 0 -1

were we write v = [vg, v, V2, v3, v4]. We quickly get the equations

Vv = 1 6V()
v, = 4y

16
vy = ? Vo
Va = Vo

Together with the equation vy + v + v2 + v3 + v4 = 1 we get vy = 35, so the answer

‘o9
1S 314"
(d) We see directly that the transition rate graph is a star in this case, i.e., a tree, so the

Markov chain is necessarily time reversible.

(a) A process G, is geometric Brownian motion if there are parameters Gy, u, and o so
that
Gt — Goety+(rB,

where B, is Brownian motion.



(b) We get
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