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See appendix for some information about some probability distributions

1. (6 points) A Branching process Z0,Z1, . . . has an offspring process with expectation µ and
variance σ2.

(a) Compute E(Zn).

(b) Compute Var(Zn) in terms of µ, σ2, and Var(Zn−1).

(c) Compute Var(Zn) for n = 0, 1, 2, 3, 4. Guess at a general formula expressing Var(Zn)
in terms of µ, σ2, and n, and prove the formula by induction.

2. (6 points) Alex is trying to model the inflow of customers to his shop, which is open daily
10:00 - 18:00. He has a data file where he has recorded the arrival time of all customers
during the last 5 days. During these days, there have been a total of 23 customers arriving
before 14:00 and 44 after 14:00.

(a) Initially, Alex assumes his customers arrive according to a Poisson process with pa-
rameter λ customers per hour, using a prior π(λ) ∝λ 1/λ. Find the posterior probabil-
ity that λ > 1.2. You may express your answer in terms of a integral, or in terms of a
suitable R function (but make sure to simplify your answer).

(b) Alex observes he often has more customers in the afternoon, so he now wants to use
an inhomogenenous Poisson process where the rate of customer arrivals is λ before
14:00 and λµ after 14:00, with µ an extra parameter with prior π(µ) ∝µ 1/µ. Find an
expression proportional to the posterior density for pairs (µ, λ).

(c) Alex gets more ambitions and wants to use a model where the rate of customer ar-
rivals is λ, λµ1, λµ2, . . . , λµ7 for each of his 8 opening hours, respectively. Name
and give a brief outline of an algorithm with which Alex can obtain an approximate
sample from the posterior for his parameters θ = (λ, µ1, µ2, . . . , µ7).

3. (6 points) Chess games are played on an 8 × 8 board of black and white squares as shown
in Figure 1. A move of the knight piece consists of two steps in some direction and then
one step to the side, as illustrated in Figure 1. Some experimentation may convince you
that for any two squares there is a sequence of moves that may bring a knight from one



Figure 1: Illustration of the 8 × 8 chess board consisting of alternating black and white squares,
and the possible moves for a knight.

square to the other. Assume that a knight starts in the lower left corner of the board and
that at every time step it moves randomly, with equal probability, to each of the squares it
may move to.

(a) Is this a Markov chain? If so, is it an ergodic Markov chain, and does it have a
limiting distribution? Explain (prove) all parts of your answer.

(b) Assume we change the rules for how the knight can move by looping the board in all
directions, so that instead of being limited by the edge of the board the knight can
simply jump to the other side of the board. For example, possible moves from the
lower left corner are illustraded in Figure 2. With these changed rules, what is the
expected number of moves until the knight returns to its starting point at the lower
left corner?

(c) Going back to the original rules for moving the knight, compute the expected number
of moves until the knight returns to its starting point at the lower left corner. Note:
If you (to save time) just describe how to make such a computation, instead of doing
the whole computation, you will only lose one point.

4. (8 points) The rate graph for a continuous-time Markov chain is given in Figure 3. Your
answers to the questions below should consist of numbers or expressions which might



Figure 2: The extended moves for a knight positioned at the bottom left corner of the board:
The dark greed squares indicate the 8 possible positions the knight can move to. The light green
squares illustrate how these positions appear when the board is “looped” around its edges.

include matrices of numbers, matrix multiplication, matrix inversion, and similar.

(a) Write down the generator matrix Q. (List the states in the order A, B, C, D, E, F).

(b) Prove or disprove that the process is time reversible.

(c) What is the long-term proportion of time that the process will spend in state C?

(d) Assuming that the process is in state C, what is the expected time until the first time
it hits either state A or state F?

(e) Assuming that the process is in state C, what is the expected number of new visits to
states other than A it will make until it hits state A?

5. (4 points)

(a) Define a Brownian bridge.

(b) Describe briefly how one may simulate a realization of a Brownian bridge.

(c) If Xt is a Brownian bridge and 0 < s < r < 1, compute cov(Xs, Xr).
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Figure 3: The rate graph for the Markov chain of question 4.

Appendix: Some probability distributions

The Bernoulli distribution

If x ∈ {0, 1} has a Bernoulli distribution with parameter 0 ≤ p ≤ 1, then the probability mass
function is

π(x) = px(1 − p)1−x.

We write x | p ∼ Bernoulli(p) and π(x | p) = Bernoulli(x; p).

The Beta distribution

If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).



The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =

(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)

Γ(α)Γ(β)Γ(n + α + β)
.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =

(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).

The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.

The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).



The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ).


