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Application of recursion and the fact that E[Z,] = E[1] = 1 gives
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(b) We get
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(c) We get directly Var[Zy] = 0 and Var [Z,] = Var[X,] = o Using the result from (b)
repeatedly we get
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We hypothesize that forn > 1
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and prove the formula by induction: First, it is true for n = 1, and secondly, assuming



it is true for n — 1 we get
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so the proof is complete. Note that we can write the result as
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(a) There have been a total of 23 + 44 = 67 customers during the 5 - 8 = 40 hours of
observation. Thus the likelihood function is Poisson(67;401). We get
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so that
(A | data) = Gamma(A; 67, 40).

The probability p asked for can be expressed as an integal as
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(b) We get for the posterior
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Alex might use a Metropolis Hastings algorithm to obtain such an posterior. The
algorithm would start with reasonable values for the parameters (for example the
value 1) and use a proposal density g(6* | 6) in each iteration. Generally, the algorithm
would iterate between making a proposed new density according to g(6* | 6) and
accepting it with probability

4= mi (1 (6" | data)q(é | 9*)).

" (6| data)g(6* | 6)

If 6" is not accepted, the old value 8 would be repeated.

For the posterior (6 | data) we get (writing yy = 1, assuming the counts of the
different hours are ¢y, c», .. ., cg, respectively, and using the priors y; o, 1/14;)
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An alternative would be to use Gibbs sampling, in which case one would cycle
through simulating from the conditional distribution of each of the parameters given
fixed values for the others. From the expression of the posterior above we see that
these conditional distributions would all be Gamma distributions.

This will be a Markov chain, as the position at each time step only depends on the
position at the previous time step. However, this Markov chain is not ergodic: In
fact it is periodic, of period 2, as the knight will alternate between black and white
squares. Because of the periodicity, there is also no limiting distribution.

The Markov chain may be viewed as a random walk on a graph: The graph would
consist of all the 64 squares in the board game, and each square has a degree 8 because
of the extended way we allow the knight to move. Given the comment in the question
about getting from any square to any other, the Markov chain is irreducible. Thus
there is a unique stationary distribution. Because all the 64 states have degree 8,
the stationary distribution is uniform. The long-term proportion of steps spent at the

starting square is 1/64, and the expected return time to the starting square becomes
64.

It is still possible to look at this as an irreducible random walk on a graph, but now
the states do not all have degree 8. To do computations, one needs to find the degree
of each of the 64 states. If d denotes the sum of all the degrees, we know that the
long-term proportion of steps spent at the start square is %, as the start square has
degree 2. Thus the expected number of steps to return to the start square becomes
d/2.
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In fact, there are 4 squares with degree 2, 3 with degree 3, 20 with degree 4, 16
with degree 6, and 16 with degree 8. This means that d = 336 and that the expected
number of steps to return to the start square is 168.

We get
-22 0 0 0 O
1 -6 3 2 0 O
{0 4 -4 0 0 O
0= O 1 0 -4 1 2
O 0 0 3 -3 0
0 0 0 4 0 -4
As the rate graph is a tree, the process is time reversible.

It is clear that the process is irreducible and ergodic. To find the limiting distribution
we find the v with positive values summing to 1 such that vQ = 0. We can do this by
replacing the first column of Q with ones, producing Q’, and then requiring that vQ’
should be the vector (1, 0,0, 0,0, 0). Finally, to find the long term proportion of time
that the process will spend in C, we take the third element of v. In matrix terms we
need to compute

(1 2 0 0 0 071 [0]
1 -6 3 2 0 0 0
1 4 -4 0 0 O 1
[100000]110_412 ol
1 0 0 3 -3 0 0
1 0 0 4 0 -4] |[0O]
To find this expected time we make states A and F absorbing states. Removing rows
and columns connected to these states we are left with a matrix
-6 3 2 0
4 -4 0 O
Q=1 o -4 1
O 0 3 -3

The matrix F of expected times spent in each state before absorbtion is given by
F = —Q7'. The answer is given by the sum of the second line (corresponding to state
C) of this matrix, so we must compute

-6 3 2 0 1
4 -4 0 0 1
_[0 Lo 0] 1 0 -4 1 1
0 0 3 =3 |1



(e) To answer this question, we first find the transition matrix of the embedded discrete-
time Markov chain, which becomes

~
Il

The fundamental matrix when making A into an absorbing state will be ' = (I —
P_,)7!, where P_, is P with the row and columnd representing A removed. Our
desired answer is the sum of the second row of this matrix, i.e, the answer is

-1

1 —-1/2 -1/3 0 0 1
-1 1 0 0 0 1
[o 100 0] ~1/4 0 1 —1/4 -172| |1].
0 0 -1 1 0 1
0 0 -1 0 1 1

(a) A Brownian bridge is Brownian motion on the interval [0, 1] conditional on By = 1.

(b) One may simulate Brownian motion as usual and then for each ¢ subtract tB; from
the simulated values.

(c) Using that we can write X; = B, — tB; we get

Cov [X,X,] = Cov[B;—xBi,B, —rBi]
= Cov|[By, B,] — sCov|[B;, B,] — rCov|[By, B;] + sr Cov [Bjy, B;]
= s—sr—rs+ srVar[B]

= Ss—sr



