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1. (a) One way to solve this is to argue using symmetry: We must have that the probability
becomes 0.5. More computationally, we may compute the marginal with

P(x1 = 1) =
∫ 1

0
P(x1 = 1 | p)π(p) dp =

∫ 1

0
p dp =

[
1
2

p2
]1

0
=

1
2
.

But it is also possible to look at this as Bayesian statistics, where p has the prior
Beta(1, 1) corresponding to the uniform distribution, and where xi ∼ Binomial(1, p).
Using the Beta-Binomial conjugacy, we may compute using the prior predictive,
which according to the Compendium becomes

P(x1 = 1) = Beta-Binomial(1; 1, 1, 1) =
(
1
1

)
B(1 + 1, 1 − 1 + 1)

B(1, 1)
=
Γ(2)Γ(1)Γ(2)
Γ(3)Γ(1)Γ(1)

=
1
2

(b) Here it may be most easy to use the Beta-Binomial conjugacy. As the prior for p
is Beta(1, 1) and we update it with one observation of 1 and two of 0, the posterior
becomes Beta(2, 3).

(c) Here we may use the posterior predictive of the Beta-Binomial: We get

P(x4 = 0 | data) = Beta-Binomial(0; 1, 2, 3) =
(
1
0

)
B(0 + 2, 1 − 0 + 3)

B(2, 3)
=
Γ(2)Γ(4)Γ(5)
Γ(6)Γ(2)Γ(3)

=
3
5
.

An alternative is to use the find the marginal by integrating out the Beta(2, 3) density
derived in (b).

2. (a) If we write X1 for the random variable representing the first set of children and X2 for
the possible extra child, we get

G(s) = E(sX1+X2) = E(sX1) · E(sX2) =

 ∞∑
k=0

sk 2
3k+1

 (1 − a + sa)

=

2
3

∞∑
k=0

( s
3

)k
 (1 − a + sa) =

2
3
·

1
1 − s/3

(1 − a + sa) = 2
1 − a + sa

3 − s
.

(b) One way to compute is to use that the expected value of the offspring distribution is
G′(1): As G′(s) = 2(2a + 1)/(3 − s)2 we get G′(1) = a + 1/2. There is a positive
probability that the branching process will not go extinct if and only if this expecta-
tion is larger than 1, i.e., if a > 1/2. It is also easy to compute the expectation a+1/2
directly from the model (not using G(s)).



(c) We find the probability of extinction by finding the smallest positive root of G(s) = s,
in other words

2
1 + a + sa

3 − s
= s

or
s2 + (2a − 3)s + 2 − 2a = 0

Using that one root is necessarily s = 1 we can factor this to get that the other root
is s = 2 − 2a. When 1/2 < a < 1 this is a number in the interval (0, 1), so it is the
smallest positive root.

(d) Given a, the probability of no offspring is 2
3 · (1 − a) as it corresponds to no offspring

in both ways of producing children. Thus we get

π(a | data) ∝ π(data | a)π(a)
∝ π(no offspring | a)rπ(some offspring | a)N−r

∝

(
1 −

2
3

(1 − a)
)r (2

3
(1 − a)

)N−r

∝ (1 + 2a)r(1 − a)N−r

3. (a) Particles arrive as a Poisson process with a total rate of 2.1 + 4.9 = 7 per second.
Thus, in an interval of length 0.5 the number of particles is distributed according to
Poisson(7 · 0.5) = Poisson(3.5). The probability for 4 particles can be computed with

dpois(4, 3.5)

giving 0.1888123.

(b) The number of alpha particles among these 5 particles is distributed as Binomial(5, 2.1
2.1+4.9 ) =

Binomial(5, 0.3). The probability for 3 alpha particles can be computed with

dbinom(3, 5, 0.3)

giving 0.1323.

(c) The arrival time of each of the 7 particles is uniform on the interval. Thus the prob-
ability that it comes in the first half of the interval is 1/2. The probability that all
particles come in the first half is (1/2)7 = 0.0078125.

(d) What happens with the alpha particles is irrelevant. The sixth beta particle to arrive
has an arrival time that is distributed as Gamma(6, 4.9). The probability that it arrives
in the interval given can be computed with

pgamma(2, 6, 4.9)-pgamma(1.7, 6, 4.9)

giving 0.08779957.

(e) The probability is 2.1
2.1+4.9 = 0.3.



4. (a) Using the notation of Dobrow, we get

Q =


−0.5 0.3 0.1 0.1
0.2 −0.25 0 0.05
0 0.5 −0.8 0.3
0 0 0 0


and thus

V =

−0.5 0.3 0.1
0.2 −0.25 0
0 0.5 −0.8

 .
We have that he fundamental matrix is F = −V−1 and that the answer is the sum of
the top row of F. In R we can compute as follows:

V <- matrix(c(-0.5, 0.3, 0.1, 0.2, -0.25, 0 , 0, 0.5, -0.8), 3, 3, byrow=T)
print(sum(-solve(V)[1,]))

giving 12.2619.

(b) We get

P̃ =


0 0.6 0.2 0.2

0.8 0 0 0.2
0 0.625 0 0.325
0 0 0 1

 .
5. (a) We have

P(8000 + 400 · 2 + 500B2 > 10000) = P(B2 > 2.4)

As B2 is normally distributed with expectation 0 and variance 2, this can be computed
to be 0.0448, for example using the R command 1 - pnorm(2.4, 0, sqrt(2)).

(b) We have that
8000 + 400 · t + 500Bt > 10000

corresponds to Bt > 4−0.8t. If T is the smallest value such that BT = 4−0.8T then T
is a stopping time. We may then compute (see Example 8.25 in Dobrow for details)

0 = E(B0) = E(BT ) = 4 − 0.8E(T )

so solving for E(T ) gives E(T ) = 4/0.8 = 5.


