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MVE550 Stochastic Processes and Bayesian Inference

Re-exam April 9, 2021, 8:30 - 12:30
Examiner: Petter Mostad, phone 031-772-3579

Allowed aids: All aids are allowed.
For example you may access teaching material on any format and you may use R for computation.

However, you are not allowed to communicate with any person other than the examiner and the exam guard.
Total number of points: 30. To pass, at least 12 points are needed.

You need to explain how you derive your answers,
i.e., show the steps in computations, unless explicitly stated otherwise.

There is an appendix containing information about some probability distributions.

1. (6 points) Assume the variable x has non-negative integers {0, 1, 2, . . . } as possible values
and a probability mass function

π(x | θ) = θ(1 − θ)x

where θ is a parameter satisfying 0 < θ < 1.

(a) Guess at a family of distributions for θ that might be a conjugate family, and prove that
this family is conjugate. (Hint: Consider how we made inference for the parameter
of the Binomial distribution).

(b) Find an expression for the marginal mass function for x when θ ∼ Uniform(0, 1).

(c) Assume instead that the prior for θ is a discrete probability distribution on the set
1/n, 2/n, . . . , (n − 1)/n for some n. Give an outline for how one can compute the
posterior distribution for θ given several observations of x with the probability mass
function above.

2. (4 points) Consider the discrete-time Markov chain with transition graph given in Figure 1.
We assume the chain starts at c.

(a) What is the expected number of steps before hitting d? (You will get full points if
you write down in a precise way how to compute the result, using functions that can
be run for example in R, but you are of course also allowed to do the computation).

(b) Assume you would like to compute the expected number of steps before the chain
produces the sequence abc. Construct and draw the transition graph for a Markov
chain that can be used to compute this result. (You do not need to to the actual
computation).
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Figure 1: The graph for question 2.

3. (7 points) A Branching process has an offspring distribution X given by

P(X = k) =


a0 if k = 0
0 if k = 1
1−a0
2k−1 if k = 2, 3, . . .

where a0 is a parameter satisfying 0 < a0 < 1.

(a) Find the probability generating function for the offspring distribution.

(b) For which values of a0 is the branching process supercritical?

(c) Find the extinction probability in terms of a0.

(d) Assume now that a0 has a prior that is uniform on the interval (0, 1). Assume the
branching process given in Figure 2 has been observed. Find the posterior distribution
for a0.

4. (3 points) Alfons is running an antiques store. He divides his customers into three cate-
gories: A, B, and C. His experience is that these customers all arrive according to indepen-
dent Poisson processes: Customers of type A arrive at a rate of 3 per hour, and customers
of type B at a rate of 2 per hour. On average he has 7 customers per hour in total.

(a) What is the probability that at least 3 customers of type A and exactly 2 customers of
type B arrive during the first two hours?



Figure 2: A picture of the three first generations of the branching process in question 4d: There
is no information about possible offsprings from the third generation.

(b) Assume that exactly 9 customers arrive during the first 2 hours one day. Select one of
these customers uniformly at random, and compute the probability that the customer
has arrived within the first 3/4 of the first hour after the opening.

5. (4 points) A computer varies between 3 states, denoted as 1, 2, and 3. We model its satus
at time t with a continuous-time Markov chain with these states. With the rate of change
from state i to state j denoted by qi j, we have q12 = 2, q13 = 0.5, q21 = 0.3 q23 = 0.1,
q31 = 1.5, q32 = 0.

For each of the questions below, you can get full points if you write down in a precise way
how to compute the result, using functions that can be run for example in R, but you are of
course also allowed to do the computation and report the result.

(a) What is the long-term proportion of time the computer is in state 2?

(b) If we ignore the lengths of stays in various states and only count the visits, what is
the long-term proportion of visits to state 2?

6. (6 points) Let Bt denote Brownian motion.

(a) Find the probability distribution of aBt + bB2t + cB3t where a, b, c are fixed constants.

(b) Prove that −Bt is Brownian motion.

(c) Find the probability that Bt = 1.4 for exactly one t in the interval 0 < t < 1.



Appendix: Some probability distributions

The Bernoulli distribution
If x ∈ {0, 1} has a Bernoulli distribution with parameter 0 ≤ p ≤ 1, then the probability mass
function is

π(x) = px(1 − p)1−x.

We write x | p ∼ Bernoulli(p) and π(x | p) = Bernoulli(x; p).

The Beta distribution
If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =

(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)

Γ(α)Γ(β)Γ(n + α + β)
.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =

(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).



The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.

The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).

The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ).


