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1. (a) We try with the Beta family: Assume θ ∼ Beta(α, β). Then

π(θ | x) ∝θ π(x | θ)π(θ)
∝θ θ(1 − θ)xθα−1(1 − θ)β−1

= θα(1 − θ)β+x−1

so θ | x ∼ Beta(α + 1, β + x) and the Beta family is a conjugate family of priors.

(b) One way to compute is the following

π(x) =

∫ 1

0
θ(1 − θ)x dθ =

Γ(2)Γ(x + 1)
Γ(3 + x)

=
1

(x + 1)(x + 2)

where we have used the formula for the density of a Beta(2, x + 1) distribution to
compute the integral. Another way is to compute

π(x) =
π(x | θ)π(θ)
π(θ | x)

=
θ(1 − θ)x · Beta(θ; 1, 1)

Beta(θ; 2, 1 + x)

=
θ(1 − θ)x

Γ(3+x)
Γ(2)Γ(1+x)θ(1 − θ)

x
=

Γ(2)Γ(1 + x)
Γ(3 + x)

=
1

(x + 1)(x + 2)
.

(c) Let p be the vector of length n − 1 containing the prior, so that pi = Pr [θ = i/n]. If
we have observations x1, . . . , xk, define vectors v1, . . . , vk by

v ji =
i
n

(
1 −

i
n

)x j

for j = 1, . . . , k, i = 1, . . . , n − 1. Then compute the vector v with

vi = pi · v1i · · · · · vki

and normalize it so that it sums to 1: This probability vector is then the posterior for
θ.

2. (a) The transition matrix, after changing d into an absorbing state, becomes

P′ =


0 0.3 0.7 0
0 0 0.2 0.8

0.1 0.4 0 0.5
0 0 0 1

 =

[
Q R
0 1

]



where

Q =

 0 0.3 0.7
0 0 0.2

0.1 0.4 0

 .
The fundamental matrix is then F = (I − Q)−1 and the expected number of steps
before hitting d is the sum of the entries in the third row of this matrix. In R we can
write

Q <- matrix(c(0, 0, 0.1, 0.3, 0, 0.4, 0.7, 0.2, 0), 3, 3)
F <- solve(diag(3)-Q)
print(sum(F[3,]))

which yields the numeric result 1.812796. It is also possible to use what Dobrow
calls “first step analysis” to obtain the same result.

(b) We need a Markov chain which records not only the current state, but also how far we
might have come in constructing the sequence abc. We can use the transition graph
in Figure 1.
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Figure 1: The graph for question 2



3. (a) We get

G(s) = E
[
sX

]
= a0 + (1 − a0)

∞∑
k=2

(
1
2

)k−1

sk

= a0 + (1 − a0)s
∞∑

k=2

( s
2

)k−1

= a0 + (1 − a0)s
s/2

1 − s/2
= a0 + (1 − a0)

s2

2 − s

(b) To find the expectation we may differentiate G(s):

G′(s) = (1 − a0)
(2 − s)2s + s2

(2 − s)2 = (1 − a0)
4s − s2

(2 − s)2

Thus E [X] = G′(1) = 3(1 − a0). The Branching process is supercritical if and only if
E [X] > 1, i.e., if

3(1 − a0) > 1

which gives a0 <
2
3 .

(c) The extinction probability is the smallest positive root of the equation G(s) = s, i.e.,
of

a0 + (1 − a0)
s2

2 − s
= s,

which yields the 2nd degree equation

s2 −
2 + a0

2 − a0
s +

2a0

2 − a0
= 0.

We know that G(1) = 1, so 1 is a root of this equation. Using that, we get the
factorization

(s − 1)
(
s −

2a0

2 − a0

)
= 0

and the smallest positive root, when a0 <
2
3 , is 2a0

2−a0
. In summary: When 0 < a0 <

2
3 ,

the excinction probability is 2a0
2−a0

, while when 2
3 ≤ a0 < 1, the extinction probability

is 1.

(d) There are 4 observations of the offspring distribution in Figure 2. In one of those there
is no offspring, while in the other 3 there are 2 or more offspring. The likelihood for
the first observation is a0, while the likelihoods for the other three observations are
proportional to 1−a0 as a function of a0. With a prior that is uniform on (0, 1) we get
that the posterior is proportional to

a1
0(1 − a0)3

Comparing with the Beta density, we see that

p0 | data ∼ Beta(2, 4).



4. (a) Let XA and XB be the number of customers of type A and B, respectively, during the
first two hours. We get XA ∼ Poisson(2 · 3) = Poisson(6) and XB ∼ Poisson(2 · 2) =

Poisson(4). The answer to the question becomes

Pr [XA ≥ 3] Pr [XB = 2]
= (1 − Pr [XA = 0] − Pr [XA = 1] − Pr [XA = 2]) Pr [XB = 2]
= (1 − e−6(1 + 6 + 62/2))e−442/2 = 0.1374451

This can also be computed in R with

(1-ppois(2, 6))*dpois(2, 4)

(b) Given that a fixed number of customers arrive, the arrival time of a randomly selected
customer among these will be uniformly distributed. Thus the probability is 3/4

2 =

0.375.

5. (a) We get

Q =

−2.5 2 0.5
0.3 −0.4 0.1
1.5 0 −1.5


for the generator matrix. To find the limiting distribution v = (v1, v2, v3) we need to
solve the equations vQ = 0 and v1 + v2 + v3 = 1. If we let Q′ be the matrix Q with the
last column replaced by 1’s, we get that we need to solve the equation

vQ′ = (0, 0, 1)

Possible R code is

Q <- matrix(c(-2.5, 0.3, 1.5, 2, -0.4, 0, 1, 1, 1), 3, 3)
print(c(0, 0, 1)%*%solve(Q))

yielding the numerical answer

(0.15, 0.75, 0.1)

Thus the answer to the original question is 0.75.

(b) We first find the transition matrix for the embedded chain:

P̃ =

 0 0.8 0.2
0.75 0 0.25

1 0 0

 .
In order to find the limiting distribution w = (w1,w2,w3) for the discrete-time Markov
chain, we need to solve the equations w1 + w2 + w3 = 1 and wP̃ = w, or equivalently
w(P̃ − I) = 0. With similar computations as in (a), we get



Q <- matrix(c(-1, 0.75, 1, 0.8, -1, 0, 1, 1, 1), 3, 3)
print(c(0, 0, 1)%*%solve(Q))

yielding the numerical answer

(0.4545455, 0.3636364, 0.1818182)

Thus the answer to the original question is 0.3636364. Note that the result can also
be found directly from (a) using the relationship between the limiting distributions of
a continuous-time Markov chain and its embedded chain:

ψ2 =
π2q2

π1q1 + π2q2 + π3q3
=

0.75 · 0.4
0.15 · 2.5 + 0.75 · 0.4 + 0.1 · 1.5

=
4

11
= 0.3636364.

6. (a) We get

aBt + bB2t + cB3c

= aBt + b(B2t − Bt) + bBt + c(B3t − B2t) + c(B2t − Bt) + cBt

= (a + b + c)Bt + (b + c)(B2t − Bt) + c(B3t − B2t)

This is a sum of three independent normally distributed variables, and it has a normal
distribution. We see directly that the expectation is zero, and for the variance we get

Var [(a + b + c)Bt + (b + c)(B2t − Bt) + c(B3t − B2t)]
= (a + b + c)2t + (b + c)2t + c2t
=

(
(a + b + c)2 + (b + c)2 + c2

)
t

So
aBt + bB2t + cB3c ∼ Normal

(
0,

(
(a + b + c)2 + (b + c)2 + c2

)
t
)

(b) One may prove this directly from the definition: One must then prove each of the 5
defining properties of Brownian motion mentioned in Dobrow. Alternative one may
first argue that −Bt is a Gaussian process: As Brownian motion is a Gaussian pro-
cess, any linear combination of variables from the process has a multivariate normal
distribution, so this is also true for any linear combination of variables from the pro-
cess −Bt, so −Bt is a Gaussian process. It also satisfies −B0 = 0, E [−Bt] = 0, and
Cov [−Bs,−Bt] = Cov [Bs, Bt] = min{s, t}. Finally, t 7→ −Bt is clearly a continuous
map. By a theorem in Dobrow, −Bt is Brownian motion.

(c) If there is exactly one such t, that implies that there is at least one such t, which
implies that T1.4 < 1, where T1.4 is the first hitting time for 1.4. As the first hitting
time is a stopping time, we get that BT1.4+t − BT1.4 is brownian motion. We know that
the probability that this process has a zero in the interval (0, ε) is 1, for any ε. Thus
we can find another t, with t < 1, where the original Brownian motion will be equal
to 1.4. In fact, with probability 1, there will be infinitely many t with t < 1 where
Bt = 1.4, as long as we assume there is at least one such t. But this means that the
probability that there is exactly one such t is zero.


