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MVE550 Stochastic Processes and Bayesian Inference

Exam January 9, 2021, 8:30 - 12:30
Examiner: Petter Mostad, phone 031-772-3579

Allowed aids: All aids are allowed.
For example you may access teaching material on any format and you may use R for compu-

tation. However, you are not allowed to communicate with any person other than the examiner
and the exam guard. Total number of points: 30. To pass, at least 12 points are needed. You need
to explain how you derive your answers, i.e., show the steps in computations, unless explicitly
stated otherwise. There is an appendix containing relevant information about some probability
distributions.

1. (4 points) Assume a variable x > 0 has density

π(x | θ) =
θ2e−θ/x

x3

where θ > 0 is a parameter.

(a) Write down a proof that the Gamma family of densities is a conjugate family to the
likelihood above.

(b) Assuming θ ∼ Gamma(α, β) and that x | θ has the distribution above, compute and
simplify the marginal density for x.

2. (7 points) A Markov chain is defined as a random walk on the weighted undirected graph
displayed in Figure 1. Note that the nodes are called A, B, C and the weights are w1, . . . ,w6

where these are positive numbers.

(a) Given specific values for w1, . . . ,w6, what is the limiting distribution for the Markov
chain?

(b) Assume the chain has been observed for 28 steps, and that the table below lists counts
of observed transitions from the node given on the left column to the node given on
the top row.

A B C
A 2 5 2
B 3 1 5
C 3 4 2
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Figure 1: The graph for question 2.

Assume we use a prior for the weights with density π(w1, . . . ,w6) = exp (−w1 − · · · − w6).
Write down and simplify a function proportional to the posterior density for the
weights w1, . . . ,w6.

(c) Describe in detail an algorithm that computes the (approximate) expected posterior
limiting probability for the chain to be in state A. You may use R code or pseudo-code
to give a precise description of your algorithm. You don’t need to run the algorithm.

(d) In the situation above, we could have assumed that the Markov chain was represented
by a stochastic matrix P and used Dirichlet priors for the rows of P. What, if any,
would be the difference for the interpretation of the result? 1

3. (6 points) Consider the Markov chain with states space {1, 2, . . . , n} and transition graph
given in Figure 2, where p is a parameter satisfying 0 ≤ p ≤ 1.

(a) For each possible value of p determine the number of communication classes.

(b) For each possible value of p and each state, determine its period.

(c) For each possible value of p compute all possible stationary distributions for the
chain, if any exist.

(d) For each possible value of p compute all possible limiting distributions for the chain,
if any exist.

1A better formulation of this question, unfortunately not used in the actual exam, would have been “What, if any,
would be the difference in the posterior model if the amount of data approached infinity?”
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Figure 2: The transition graph for question 3

4. (4 points)

(a) Assume the offspring process in a Branching process has probability 1/4 for zero
offspring, probabiliy 1/2 for 1 offspring, and probability 1/4 for 3 offspring. Calculate
the probability that the process will eventually go extinct.

(b) Assume another Branching process uses as offspring process in the first generation a
Poisson distribution with parameter λ. After this, the offspring distribution of (a) is
used. Compute the probability that this branching process will go extinct.

5. (5 points) Adam is the main salesperson in a store that sells candy. Customers arrive
according to independent Poisson processes. Adult customers arrive on average with one
customer every 3 minutes while on average one child arrives every minute. The time it
takes to service a customer is exponentially distributed. For adult customers it takes on
average 2 minutes, while for child customers it takes on average 1 minute. If Adam is
busy with a customer when another customer arrives, that customer moves on to another
salesperson.

(a) Compute the long time average proportion of time Adam serves adult customers.

(b) Write down the transition rate graph for the process above, and also the graph with
transition probabilities for a Poisson subordinated process to the process above.

(c) Based on the above, give a short proof that the continuous-time Markov process you
derived above is time reversible2.

2A better formulation of the question would have been “give a proof that is as short as possible”



6. (2 points) Assume Nt is a Poisson process with parameter λ = 2. Prove that Nt − 2t is a
martingale with respect to Nt.

7. (2 points) Prove that the stochastic process (Xt)0≤t≤1 defined by conditioning Brownian
motion on B1 = a for some real a is identical to the process Yt = Bt− tB1 + ta for 0 ≤ t ≤ 1.



Appendix: Some probability distributions

The Bernoulli distribution
If x ∈ {0, 1} has a Bernoulli distribution with parameter 0 ≤ p ≤ 1, then the probability mass
function is

π(x) = px(1 − p)1−x.

We write x | p ∼ Bernoulli(p) and π(x | p) = Bernoulli(x; p).

The Beta distribution
If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =

(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)

Γ(α)Γ(β)Γ(n + α + β)
.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =

(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).



The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.

The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).

The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ).


