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1. (a) Assuming that θ ∼ Gamma(α, β), we get

π(θ | x) ∝θ π(x | θ)π(θ)

=
θ2e−θ/x

x3 · Gamma(θ;α, β)

∝θ θ2e−θ/xθα−1e−βθ

= θα+2−1e−(β+1/x)θ

∝θ Gamma
(
θ;α + 2, β +

1
x

)
So if the prior is any Gamma density then the posterior is also a Gamma density. This
proves conjugacy for the Gamma family.

(b) We may compute

π(x) =
π(x | θ)π(θ)
π(θ | x)

=

θ2e−θ/x

x3 · Gamma(θ;α, β)

Gamma
(
θ;α + 2, β + 1

x

)
=

θ2e−θ/x

x3 ·
βα

Γ(α)θ
α−1 exp(−βθ)

(β+1/x)α+2

Γ(α+2) θα+2−1 exp(−(β + 1/x)θ)

=
Γ(α + 2)

Γ(α)
·

βα

(β + 1/x)α+2 ·
1
x3

=
α(α + 1)βα

(β + 1/x)α+2x3

2. (a) Using the theory for undirected weighted graphs, the limiting distribution for the
states A, B, C is (w1 + w2 + w4

W
,

w1 + w3 + w5

W
,

w2 + w3 + w6

W

)
where

W = 2(w1 + w2 + w3) + w4 + w5 + w6.



(b) We get

π(w1, . . . ,w6 | data)
∝w1,...,w6 π(data | w1, . . . ,w6)π(w1, . . . ,w6)

∝w1,...,w6

w2
4w5

1w2
2

(w1 + w2 + w4)9 ·
w3

1w1
5w5

3

(w1 + w5 + w3)9 ·
w3

2w4
3w2

6

(w2 + w3 + w6)9 · exp (−w1 − · · · − w6)

=
w8

1w5
2w9

3w2
4w1

5w2
6

(w1 + w2 + w4)9(w1 + w5 + w3)9(w2 + w3 + w6)9 exp(−w1 − · · · − w6)

(c) The idea would be to simulate a sample from the posterior for the vector of weights
(w1,w2, . . . ,w6), and then take the average of w1+w2+w4

W over this sample. There are
many ways to generate such a sample. Below is a basic example:

post <- function(w) { w[1]^8*w[2]^5*w[3]^9*w[4]^2*w[5]*w[6]^2/
(w[1]+w[2]+w[4])^9/(w[1]+w[5]+w[3])^9/(w[2]+w[3]+w[6])^9*
exp(-sum(w))

}
N <- 10000
result <- rep(0, N-1)
w <- wprop <- rep(1, 6)
for (i in 2:N) {
wprop <- abs(w + rnorm(6, 0, 0.1))
if (runif(1) < post(wprop)/post(w)) w <- wprop
result[i-1] <- (w[1]+w[2]+w[4])/(sum(w)+w[1]+w[2]+w[3])

}
print(mean(result))

Many improvements could be made to the algorithm above to improve its accuracy.
For example, one should transform so that one simulated the variables ui = log(wi)
instead of the variables wi, and one should compute the logarithm of the posterior
density instead of the density itself. One should also remove burn-in.
The most important point is that the formula from (a), for the long-term probability
for state A, should be computed for the simulated vector of weights in each step, and
the average should be computed afterwards.

(d) The assumption that the Markov chain is represented as a random walk on a weighted
graph is equivalent to the assumption that the Markov chain is time reversible. In the
alternative model, no such assumption would be made. The difference between the
priors would make also make a difference, but this difference would diminish as the
amount of data increased. The remaining difference would be that the Markov chain
using the model of this task would be time-reversible, while in the alternative model
it would not.

3. (a) When p = 1 there are n communication classes, one for each state. When p < 1,
there is a single communication class.



(b) When p = 1, the chain does not return to states i > 1, so these have period ∞, while
state 1 has period 1. When 0 < p < 1 the states are all aperiodic. When p = 0 all
states have period n.

(c) When p = 1 the chain is absorbed in the state 1, so the distribution (1, 0, . . . , 0) is a
stationary distribution, and there can be no other.
When p < 1 the chain is irreducible, so there exists a single stationary distribution. It
can be found as the probability vector v satisfying vP = v where

P =



p 1 − p 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
1 0 0 0 . . . 0


.

We get
v1 p + vn = v1

v1(1 − p) = v2

and
v2 = v3 = · · · = vn.

Together with v1 + v2 + · · · + vn = 1 this yields

v =
1

p + n − pn
(1, 1 − p, . . . , 1 − p)

as the unique stationary distribution.

(d) When p = 1 the chain is absorbed in the state 1 so the limiting distribution is clearly
(1, 0, . . . , 0). When 0 < p < 1 the Markov chain is irreducible and aperiodic, so it
has a unique limiting distribution that is identical to the stationary distribution found
above. When p = 0 the Markov chain is periodic, and thus does not have a limiting
distribution.

4. (a) We need to find the smallest positive root of G(s) = s where G(s) = 1
4 + 1

2 s + 1
4 s3 is

the probability generating function. We get the equation

4s = 1 + 2s + s3

or 1−2s+s3 = 0. Using that this equation has a root s = 1 (as we know that G(1) = 1)
we can factorize

1−2s+s3 = (s−1)(s2+s−1) = (s−1)
(s +

1
2

)2

−
5
4

 = (s−1)
s +

1
2

+

√
5

2

 s +
1
2
−

√
5

2

 .
Thus the smallest positive root, and the extinction probability, is c = −1

2 +
√

5
2 =

0.618034.



(b) Conditioning on the size of the first generation and using the value c computed above,
we get

Pr [extinction] = E [E [extinction | Z1]] = E
[
cZ1

]
=

∞∑
k=0

cke−λ
λk

k!

= e−λ
∞∑

k=0

(cλ)k

k!
= e−λecλ = exp(−0.381966λ).

5. (a) We can model the situation with a continuous time Markov chain with three states:
O (Adam has no customers), A (Adam has an adult customer), and C (Adam has a
child customer). The generating matrix becomes

Q =

−
4
3

1
3 1

1
2 −1

2 0
1 0 −1


and the equation vQ = 0 yields the two equations v1/3 − v2/2 = 0 and v1 − v3 = 0.
Together with the equation v1 + v2 + v3 = 1 we easily get the solution

v =

(
3
8
,

1
4
,

3
8

)
and the answer to the question is a quarter of the time.

(b) To make a Poisson subordination, we choose λ = 4/3, which yields

R =
1
λ

Q + I =
3
4

−
4
3

1
3 1

1
2 −1

2 0
1 0 −1

 + I =

−1 1
4

3
4

3
8 −3

8 0
3
4 0 −3

4

 + I =

0
1
4

3
4

3
8

5
8 0

3
4 0 1

4

 .
The graphs become
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(c) As the transition rate graph is a tree, it automatically follows that the Markov process
is time reversible.

6. We have

E [Nt − 2t | Nr, 0 ≤ r ≤ s]
= E [Ns + Nt − Ns | Nr, 0 ≤ r ≤ s] − 2t
= E [Ns | Nr, 0 ≤ r ≤ s] + E [Nt − Ns] − 2t
= Ns + E [Nt−s] − 2t
= Ns + 2(t − s) − 2t
= Ns − 2s

Further,
E [|Nt − 2t|] ≤ E [|Nt|] + 2t = 2t + 2t < ∞.

7. We have

Xt ∼ Bt | (B1 = a) ∼ Bt − tB1 + tB1 | (B1 = a) ∼ Bt − tB1 + ta | (B1 = a)

Now Bt− tB1 is a Brownian bridge, and according to Dobrow it is independent of the value
of B1. Thus

Bt − tB1 + ta | (B1 = a) ∼ Bt − tB1 + ta ∼ Yt.

Alterantively, one may observe that the processes Xt and Yt are Gaussian processes so it is
enough to prove that they have the same expectation and covariance functions to prove that
they are identical. This can be done with direct computation, using similar computations
as those in Dobrow when proving the statement above for a = 0. We get

E [Xt] = at = E [Yt]

and when s ≤ t
Cov [Xs, Xt] = s − st = Cov [Ys,Yt] .


