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1. (a) We get

π(θ | x) ∝θ π(x | θ)π(θ)
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This is proportional to a Gamma density with parameters α = 1/2 and β = 1
2 (x−42)2,

so
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1
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)

(b) More generally, we get that if the prior for θ is Gamma(α, β), then

π(θ | x) ∝θ π(x | θ)π(θ)
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so that

θ | x ∼ Gamma
(
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)
.

Applying this updating rule for the three data observations, we get that

θ | data ∼ Gamma
(
3 ·

1
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,

1
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(41.1 − 42)2 +
1
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1
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)

= Gamma(1.5, 0.455).

2. (a)

(b) • A is transient, not recurrent, not absorbing, and has period 2.
• B is not transient, recurrent, not absorbing, and has period 2.
• C is not transient, recurrent, not absorbing, and has period 2.



• D is not transient, recurrent, absorbing, and has period 1.

• E is transient, not recurrent, not absorbing, and has period 2.

(c) For example

v1 = (0, 0.5, 0.5, 0, 0)
v2 = (0, 0, 0, 1, 0)

(d) The chain is not ergodic: An ergodic chain needs to be irreducible, i.e., have only one
communication class. This chain has 3 communication classes: A,E; B,C; and D.

(e) Using the ordering A, E, B, C, D of the states, we can re-write the transition matrix
as

P′ =


0 0.8 0.1 0 0.1

0.7 0 0 0.1 0.2
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

 =

[
Q R
0 E

]

where Q =

[
0 0.8

0.7 0

]
. For the purposes of computing the expected number of visits

to A and E we can regard the three states C, D, E as a single absorbing state. We then
get

F = (I − Q)−1 =

[
1 −0.8
−0.7 1

]−1

=
1

1 − 0.56

[
1 0.8

0.7 1

]
=

[
2.2727 1.8182
1.5909 2.2727

]
.

As the chain starts in A, the expected number of visits to A is 2.2727 and the expected
number of visits to E is 1.8182. For the remaining states, we see that there is a positive
probability of reaching them, and that, when the chan has reached them, it will revisit
them an infinite number of times. Thus the expected number of visits is infinite.

3. (a) We get

G(s) = E(sX) =
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(b) The process is critical when E(X) = 1 where X is the offspring process. This gives

e−λcλc + 2 · e−λc
λ2
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2
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4
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The positive solution of this equation can be found numerically, for example by vari-
ous optimization algorithm.

(c) We may compute the variance for example via the probability generating function.
We have

G′(s) = e−λλ + e−λλ2s + (1 − e−λ(1 + λ +
1
2
λ2))3s2

G′′(s) = e−λλ2 + (1 − e−λ(1 + λ +
1
2
λ2)6s

G′′(1) = e−λλ2 + 6 − 6e−λ(1 + λ +
1
2
λ2) = 6 − 6e−λ − 6e−λλ − 2e−λλ2.

As we have
Var(X) = G′′(1) + G′(1) −G′(1)2

and G′(1) = E(X) = 1 when the process is critical, we get, in this case,

Var(X) = 6 − 6e−λc − 6e−λcλc + 2e−λcλ2
c .

(d) The extinction probability is 1, as this is a critical process.

4. The chain will alternate between simulating from two conditional distributions:

π(x | y) ∝x exp
(
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)
∝x exp
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Comparing with the normal density we get

x | y ∼ Normal
(
−1,

1
2y

)
.



Similarly,
π(y | x) ∝y y3 exp(−y(x2 + 2x + 2)).

Comparing with the Gamma density we get

y | x ∼ Gamma(4, x2 + 2x + 1)

A Gibbs sampling algorithm will start at some reasonable value, for example (x, y) = (1, 1),
and then alternate between simulating x and y from the distributions above.

5. (a) The transition rates out of state 0 can be computed as

q04 = 0.5 · 0.84 = 0.2048
q03 = 0.5 · 4 · 0.83 · 0.2 = 0.2048
q02 = 0.5 · 6 · 0.82 · 0.22 = 0.0768
q01 = 0.5 · 4 · 0.8 · 0.23 = 0.0128

and thus we also get

q0 = q01 + q02 + q03 + q04 = 0.4992

For the remaining non-zero transition rates we can compute

q43 =
4
5

= 0.8

q32 =
3
5

= 0.6

q21 =
2
5

= 0.4

q10 =
1
5

= 0.2

so that we get

Q =


−0.4992 0.0128 0.0768 0.2048 0.2048

0.2 −0.2 0 0 0
0 0.4 −0.4 0 0
0 0 0.6 −0.6 0
0 0 0 0.8 −0.8

 .

(b) The process is not time-reversible. The chain is irreducible and has a unique sta-
tionary distribution with positive probabilities for each state. Using this stationary
distribution, then, for example, the probability to be in state 3 and move to state 2
is positive, while the probability to be in state 2 and then move to state 3 is zero,
contradicting a condition of time-reversibility.



(c) If v = (v0, v1, . . . , v4) is the unique stationary distribution, we know that vQ = 0. One
can solve this on computer, but it is also easy to solve manually the equations

0 = −0.4992v0 + 0.2v1

0 = 0.0128v0 − 0.2v1 + 0.4v2

0 = 0.0768v0 − 0.4v2 + 0.6v3

0 = 0.2048v0 − 0.6v3 + 0.8v4

0 = 0.2048v0 − 0.8v4

together with the equation v0+v1+v2+v3+v4 = 1. Specifically, successive substitution
of v4 and v3 yields

0 = −0.4992v0 + 0.2v1

0 = 0.4864v0 − 0.4v2

0 = 0.4096v0 − 0.6v3

0 = 0.2048v0 − 0.8v4

which togethre with v0 + v1 + v2 + v3 + v4 = 1 yields

v = (0.1769, 0.4416, 0.2153, 0.1208, 0.0453)

The answer is that the proportion of the time the chain is in state 2 is 0.2153.

(d) The new process will be a Poisson subortination of the orignial process. Note that we
can use a Poisson rate of λ = 1 as this rate is higher than any of the transition rates qi

found above. According to the theory, we can write

P =
1
λ

Q + I = Q + I =


0.5008 0.0128 0.0768 0.2048 0.2048

0.2 0.8 0 0 0
0 0.4 0.6 0 0
0 0 0.6 0.4 0
0 0 0 0.8 0.2

 .

6. (a) For any a > 0 we have E(Bat + Ba2t) = E(Bat) + E(Ba2t) = 0. If a ≥ 1 then a2t ≥ at
and we can write

Bat + Ba2t = Ba2t − Bat + 2Bat

where Ba2t − Bat and Bat are independently normally distributed. The variance is

Var(Ba2t − Bat + 2Bat) = Var(Ba2t − Bat) + Var(2Bat)
= Var(Ba2t−at) + 4 Var(Bat)
= a2t − at + 4at = a2t + 3at



Thus when a ≥ 1,
Bat + Ba2t ∼ Normal(0, a2t + 3at).

If a ≤ 1 then a2t ≤ at and we can write

Bat + Ba2t = Bat − Ba2t + 2Ba2t.

The variance now becomes

Var(Bat − Ba2t + 2Ba2t) = Var(Bat−a2t) + 4 Var(Ba2t)
= at − a2t + 4a2t = at + 3a2t

and we get
Bat + Ba2t ∼ Normal(0, at + 3a2t).

(b) Similar to (a), we divide up into the cases b ≥ a and b < a. When b ≥ a, similar
computations as above gives

Var(Babt + Ba2t) = at(b + 3a)

so in order for this to be Brownian motion, we need that a(b + 3a) = 1, i.e., b =

1/a − 3a. Together with the conditions 0 < a ≤ b, we find that

0 < a ≤
1
2

b =
1
a
− 3a

are combinations of a and b fulfilling the criteria. On the other hand when b < a we
get

Var(Babt + Ba2t) = at(a + 3b)

and we need a(a + 3b) = 1, i.e., b = 1
3 ( 1

a − a). Together with the conditions 0 < b < a
we find that

1
2
< a < 1

b =
1
3

(
1
a
− a

)
are combinations of a and b fulfilling the criteria.


