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MVE550 Stochastic Processes and Bayesian Inference

Re-exam April 8, 2020, 8:30 - 12:30
Examiner: Petter Mostad, phone 031-772-3579

Allowed aids: All aids are allowed.
For example you may access teaching material on any format and you may use R for computation.

However, you are not allowed to communicate with any person other than the examiner and the exam guard.
Total number of points: 30. To pass, at least 12 points are needed.

There is an appendix containing relevant information about some probability distributions.

1. (4 points) Assume the variables y1, y2, . . . , yk, . . . each can have possible values 0 or 1.
Assume the parameter p is uniformly distributed on the interval from 0 to 1. Assume that
given p, the yi are independent, with the probablity p of being 1. Assume you have made
the observations y1 = 1, y2 = 0, y3 = 0, y4 = 1, y5 = 0.

(a) What is the posterior for p given the data?

(b) Given the information above, what is the probability that y6 = 1?

2. (3 points) A discrete-time Markov chain has states A, B, C, D, and transition matrix

P =


1 0 0 0
1
3 0 1

3
1
3

1
2

1
4 0 1

4
0 0 0 1


If the chain starts in state C, what is the probability that it is absorbed in state A? (Show
the steps in the computation).

3. (4 points) Let Z0,Z1, . . . be a branching process where the offspring distribution has prob-
ability generating function

G(s) =

(
3 + s

4

)2

e(s−1)/3.

(a) Is the process critical, subcritical, or supercritical? Prove your answer.

(b) Find the variance of the offspring process.

(c) Find the extinction probability of the branching process.



4. (6 points) We will consider sequences S = (x1, . . . , x50) of 50 integers so that x1 = 0,
x50 = 0, and |xi − xi+1| ≤ 1 for all i = 1, . . . , 49. In other words, the sequences change with
at most 1 at each step. An example is illustrated with

0 0 0 -1 -2 -2 -2 -3 -3 -2 -2 -1 -1 0 0 0 1 2 1 2 3 3 2 3 2
2 3 3 4 3 4 4 5 4 4 5 6 5 6 5 5 4 3 3 2 3 2 1 0 0

LetA be the set of all sequences of the type above. For each S ∈ A there is a largest value
L(S ) = maxi=1,...,50 xi that the integers reach; for the sequence above, L(S ) = 6. We would
like to estimate the average of L(S ) over all sequences S in the setA.

(a) Two such sequences are called neighbours if they are identical except at a single
position in the sequence. Define a graph where the nodes are the possible sequences
and an edge connects two sequences if they are neighbours. If you make a random
walk on this graph, will the stationary distribution be uniform? Why or why not?

(b) Assume you have computer code which for any valid sequence S computes F(S ), the
number of neighbour sequences, and another function G(S ) which randomly selects a
neighbour sequence uniformly among the neighbours. Write down R code (or pseudo
code) which generates a Markov chain of sequences whose stationary distribution is
the uniform distribution. Also write down any computation you need to make in order
to derive any formulas you use in your code.

(c) Describe how you can use the code above to estimate1 the average of L(S ) over all
sequences S in the setA.

5. (6 points) Anders runs a food truck selling hotdogs and hamburgers. A hotdog meal takes
on average 2 minutes to prepare while a hamburger meal on average takes 3 minutes to
prepare. 60% of customers choose the hamburger meal. We assume that the preparation
times are exponentially distributed. Customers arrive according to a Poisson process with
an intensity of 1 person every four minutes. If Anders is already working on an order when
a customer arrives, the new customer waits. However, if there is already another customer
waiting, the new customer goes away.

(a) Describe the five states that Ander’s food truck can be in. Write down the generator
matrix for the corresponding Markov chain.

(b) Compute the expected proportion of time Anders will be spending tending to cus-
tomers. You may do this using R. An alternative is to just describe in detail how one
can do such a computation.

(c) Among the customers that do not turn away, what is the average waiting time?

1This would not be the most computationally efficient way to get an estimate



6. (4 points) Consider a discrete time Markov chain with the possible states 1, 2, 3, 4. Assume
it has been observed for 30 transitions, and the resulting counts of transitions between
states is given in the following table (with the rows listing the state before the transition
and the columns listing the state after the transition):

1 2 3 4
1 3 4 0 0
2 4 2 4 0
3 0 4 1 2
4 0 0 2 4

(a) Let P be the unknown transition matrix for the chain. Use as a prior for P the uniform
distribution on the set of matrices P where all entries are non-negative and all rows
sum to 1. Compute the expectation of the posterior of P given the data above.

(b) Assume now we get the new information that the Markov chain can only change its
value with +1, 0, or -1 in each step. Change the prior distribution to reflect this, so
that it is a product of Dirichlet distributions with pseudo counts 1, but restricted to
the entries in the rows of P that could be non-zero. Compute the expectation of the
posterior of P using this prior and using the data above.

7. (3 points) A discrete-time Markov chain has states 0 and 1 and starts at 1. The probability
that it will be 0 after exactly 3 steps is at least 0.3, and the probability that it will be 0
after exactly 5 steps will be at least 0.5. Find the probability p so that no Markov chain
fulfilling the above has a probability below p of being 0 after exactly 8 steps, and give the
transition matrix of a Markov chain fulfilling the above and having probability p of being
0 after exactly 8 steps.



Appendix: Some probability distributions

The Bernoulli distribution
If x ∈ {0, 1} has a Bernoulli distribution with parameter 0 ≤ p ≤ 1, then the probability mass
function is

π(x) = px(1 − p)1−x.

We write x | p ∼ Bernoulli(p) and π(x | p) = Bernoulli(x; p).

The Beta distribution
If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =

(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)

Γ(α)Γ(β)Γ(n + α + β)
.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =

(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).



The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.

The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).

The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ).


