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1. (a) The uniform prior on p is the same as a Beta(1, 1) distribution, and given p, each yi

has a Bernoulli(p) distribution, or in other words a Binomial(1, p) distribution. The
Beta distribution is conjugate to the Binomial. Using the formula for the conjugacy,
we get the posterior

p | data ∼ Beta(1 + 2, 1 + 3) = Beta(3, 4).

More directly you may think as follows: Using Bayes formula, we get that

π(p | data) ∝p p2(1 − p)3

Comparing with the Beta distribution, we get that π(p | data) = Beta(p; 3, 4).

(b) The predictive distribution for this conjugacy is Beta-Binomial, and we get

y6 | data ∼ Beta-binomial(1, 3, 4).

Thus

Pr
[
y6 = 1 | data

]
=

Γ(1 + 3)Γ(1 − 1 + 4)Γ(7)
Γ(3)Γ(4)Γ(1 + 3 + 4)

=
3
7
.

Alternatively you may compute

π(y6 = 1 | data) =

∫ 1

0
π(y6 = 1 | p)π(p | data) dp =

∫ 1

0
p ·

Γ(3)Γ(4)
Γ(7)

p2(1 − p)3 dp

=
Γ(3)Γ(4)

Γ(7)

∫ 1

0
p3(1 − p)3 dp =

Γ(3)Γ(4)
Γ(7)

·
Γ(8)

Γ(4)Γ(4)
=

3
7

= 0.4286.

In the last line, we use the formula for the Beta(3, 3) density to compute the integral.

2. First, we rearrange the rows and columns so that the states are listed in the order B, C, A,
D. We then get the transition matrix

P′ =


0 1

3
1
3

1
3

1
4 0 1

2
1
4

0 0 1 0
0 0 0 1

 .



The point with this rearrangement is that the matrix now has the standard form used in
Dobrow section 3.8, with

Q =

[
0 1

3
1
4 0

]
and

R =

[1
3

1
3

1
2

1
4

]
.

We get

F = (I − Q)−1 =

[
1 −1

3
−1

4 1

]−1

=
12
11

[
1 1

3
1
4 1

]
and

FR =
12
11

[
1 1

3
1
4 1

] [1
3

1
3

1
2

1
4

]
=

12
11

[ 1
2

5
12

7
12

1
2

]
=

[ 6
11

5
11

7
11

4
11

]
.

Thus the probability that a chain starting in C is absorbed in A is 7
11 = 0.6364.

3. (a) One may compute that

G′(s) =
9 + s

12
·

3 + s
4
· e(s−1)/3

and thus that G′(1) = 5
6 = 0.8333. As G′(1) is the expectation of the offspring process,

this expectation is less than 1, and thus the branching process is subcritical.

(b) One may further compute that

G′′(s) =
63 + 18s + s2

144
e(s−1)/3

and thus that G′′(1) = 41
72 . If Z is a variable with the offspring distribution we can then

compute

Var(Z) = G′′(1) + G′(1) −G′(1)2 =
41
72

+
5
6
−

(
5
6

)2

=
17
24

= 0.7083.

(c) As the branching process is subcritical, the probability for extinction is 1.

An alternative solution method to (a) and (b) is to observe that the probability generting
function G(s) is the product of

(
3
4 + 1

4 s
)2

and e
1
3 (s−1). The first factor is the probability

generating function of a random variable X ∼ Binomial
(
2; 1

4

)
, while the second factor

is the probability generating funcion of a random variable Y ∼ Poisson
(

1
3

)
. Thus the

offspring process is the sum of independent variables X and Y with these distributions.
This means that the expectation of the offspring process is 2 · 1

4 + 1
3 = 5

6 and the variance is
2 · 1

4 ·
3
4 + 1

3 = 17
24 .



4. (a) In the stationary distribution for a random walk on an undirected graph, the proba-
bility of being at a node is proportional to the degree of the node, i.e., the number of
neighbours it has. So if we can show that different sequences has different number of
neighbours, we have shown that the stationary distribution is not uniform.
Consider the sequence (0, 0, . . . , 0) of only zeros. By inspection, it should be clear
that it has 2·48 = 96 neighbours. On the other hand, consider the sequence 0, 1, 2, . . . ,
24, 24, . . . , 1, 0. A neighbour can be created only by changing either of the two middle
values of 24 to 23. Thus one sees this sequence has only 2 neighbours.

(b) The idea would be to use a Metropolis Hastings algorithm, where the target distribu-
tion is the uniform distribution onA. R code could look like

S <- rep(0, 50)
N <- 1000000
result <- rep(0, N)
for (i in 2:N) {
prop = G(S)
if (F(S)/F(prop)>runif(1))
S = prop

result[i] <- max(S)
}

For a current sequence S and a proposed sequence S ′, the acceptance function is
computed as

a(S , S ′) =
π(S )q(S | S ′)
π(S ′)q(S ′ | S )

=
q(S | S ′)
q(S ′ | S )

=
1/ deg(S ′)
1/ deg(S )

=
deg(S )
deg(S ′)

=
F(S )
F(S ′)

where q(S ′ | S ) and q(S | S ′) are the probabilities of selecting S ′ when the current
state is S , and vice versa, respectively.
NOTE: Example 5.4 (Darwin’s finches) in our textbook Dobrow is quite similar to
this question. However, there is an error in that example; the acceptance function
should be deg(i)/ deg( j), and not deg( j)/ deg(i) as written. Students who have been
confused by this error will not be deducted for this confusion.

(c) Using the Metropolis Hastings code above, one can generate a Markov chain of se-
quences whose stationary distribution is the uniform distribution on A. By the Law
of Large Numbers for Markov Chains, the average of L(S ) applied to the sequences
in the chain will have as limit the true average we seek. In the code above, the average
of the result vector will approximate the average we seek.

5. (a) The five different states can be described as follows:

(A) No customers
(B) Anders preparing hamburger, no customer waiting
(C) Anders preparing hotdog, no customer waiting



(D) Anders preparing hamburger, one customer waiting
(E) Anders preparing hotdog, one customer waiting

The generator matrix becomes:

Q =


−1

4
1
4 · 0.6

1
4 · 0.4 0 0

1
3 − 7

12 0 1
4 0

1
2 0 −3

4 0 1
4

0 1
3 · 0.6

1
3 · 0.4 −1

3 0
0 1

2 · 0.6
1
2 · 0.4 0 −1

2


(b) We need to compute the stationary distribution v = (v1, v2, v3, v4, v5). We know that it

fulfills vQ = 0 and v1 + v2 + v3 + v4 + v5 = 1. So we may use 4 of the 5 equations
from the matrix equation vQ = 0 together with v1 + v2 + v3 + v4 + v5 = 1 to find the
solution. In R, one may write

Q = matrix(c(-1/4, 0.6/4, 0.4/4, 0, 1,
1/3, -7/12, 0, 1/4, 1,
1/2, 0, -3/4, 0, 1,
0, 0.6/3, 0.4/3, -1/3, 1,
0, 0.6/2, 0.4/2, 0, 1),

5, 5, byrow=T)

v = c(0, 0, 0, 0, 1)%*%solve(Q)
print(1 - v[1])

which yields 0.516.

(c) When a customer appears at the food truck, it is in state A, B, . . . , E with probabil-
ity v1, v2, . . . , v5, respectively. The probability that the customer does not turn away
is v1 + v2 + v3. With probability v1 there is no waiting time. With probability v2

the expected waiting time is 3 minutes (as we assume the waiting time is Exponen-
tially distributed, so that it does not matter that the hamburger may already have been
started on). With probaility v3 the expected waiting time is 2 minutes. Thus, the
expected waiting time given that the customer does not turn away is

3 · v2 + 2 · v3

v1 + v2 + v3
= 1.038

minutes.

6. (a) The mentioned prior corresponds to one where each row is modelled with a Dirichlet(1, 1, 1, 1)
distribution. Because of the Multivariate-Dirichlet conjugacy, the posterior for, e.g.,
the first row, given the observation vector (3, 4, 0, 0), is Dirichlet(1 + 3, 1 + 4, 1 +

0, 1 + 0) = Dirichlet(4, 5, 1, 1). The expectation for this distribution is the vector



(4/11, 5/11, 1/11, 1/11). The posterior expectation for P thus becomes

E [P | data] =


4/11 5/11 1/11 1/11
5/14 3/14 5/14 1/14
1/11 5/11 2/11 3/11
1/10 1/10 3/10 5/10

 .
(b) The number of values that may be non-zero in each of the four rows of P are 2,

3, 3, and 2, respectively. Thus the priors used for these rows are Dirichlet(1, 1)
Dirichlet(1, 1, 1), Dirichlet(1, 1, 1), and Dirichlet(1, 1). The posteriors become Dirichlet(4, 5),
Dirichlet(5, 3, 5), Dirichlet(5, 2, 3), and Dirchlet(3, 5), respectively, so that the expec-
tation of the posterior becomes

E [P | data] =


4/9 5/9 0 0

5/13 3/13 5/13 0
0 5/10 2/10 3/10
0 0 3/8 5/8

 .
7. According to the Chapman-Kolmogorov Relationship and using the standard notation from

Chapter 3 of Dobrow, we may write

P8
10 = P3

11P5
10 + P3

10P5
00.

We know that P3
10 > 0.3 and that P5

10 > 0.5. However, in order to find a lower bound on
P8

10, we would need to have lower bounds on P3
11 and P5

00, and there is no reason why these
should not be small. In fact, one can easily find an example where these values are zero: If

P =

[
0 1
1 0

]
,

the chain will simply jump between 1 and 0 at every step. We get P3
11 = 0 and P5

00 = 0,
while at the same time P3

10 = 1 and P5
10 = 1. In this case, P8

10 = 0, so the answer is that
p = 0, and the P above exemplifies a Markov chain with the required properties.


