Petter Mostad Applied Mathematics and Statistics Chalmers and GU

MVE550 Stochastic Processes and Bayesian Inference

Exam January 18, 2020, 14:00 - 18:00 Allowed aids: Chalmers-approved calculator. Total number of points: 30. To pass, at least 12 points are needed There is an appendix containing relevant information about some probability distributions.

- 1. (4 points) Assume a random variable X with values in the positive real numbers has density $\pi(x \mid \theta) = \theta^2 x \exp(-\theta x)$, where $\theta > 0$ is a parameter. Assume we use the improper prior $\pi(\theta) \propto_{\theta} 1/\theta$.
 - (a) Find a function of θ proportional to the posterior for θ given an observation x.
 - (b) Find the name and parameters of the posterior for θ given an observation x.
 - (c) Find the name and parameters of the posterior for θ after having made all the observations x = 2.1, x = 1.2, and x = 3.9.

Figure 1: The board for question 2.

2. (4 points) A game is played on a board consisting of 7×7 squares, see Figure 1. The game starts in the square in the middle of the board. In each move, one moves with equal probability to one of the directly adjacent squares: There are 4, 3, or 2 such adjacent squares, with squares on the edges and in the corners having fewer neighbours.

- (a) Show that the game can be described as a random walk on a graph.
- (b) Compute the expected number of steps until you are back at the central square of the board.
- 3. (5 points) In the offspring process of a Branching process, the probability to obtain 3 offspring is 4/13 and the probability to obtain 2 offspring is also 4/13. With the remaining probability, there is no offspring.
 - (a) Is the process supercritical, subcritical, or critical?
 - (b) What is the expected size of Z_n , the size of the *n*'th generation?
 - (c) Find the probability generating function for the offspring distribution.
 - (d) Compute the probability that the process goes extinct.
- 4. (3 points) What is the Ising model? Describe how one can use Gibbs sampling on this model. (For partial credit: Just describe how Gibbs sampling works).

Figure 2: The network for question 5.

- 5. (4 points) Consider the discrete time Markov chain on the three states 1, 2, 3 illustrated in Figure 2. The chain starts in state 1.
 - (a) Describe the communication classes of the chain. For each state, describe whether it is transient or recurrent.
 - (b) Compute the expected number of visits to state 2.

- 6. (6 points) A biological system is described by a continuous time Markov chain with 5 different possible states: A, B, C, D, and E. We have that
 - If in state A, the system stays there for an expected time of 2 hours, then moves to state B.
 - If in state C, the system stays there for an expected time of 3 hours, then moves to state B.
 - If in state E, the system stays there for an expected time of 4 hours, then moves to state D.
 - If in state B, the system moves to state A with a rate of 0.5 per hour, to state C with a rate of 0.5 per hour, and to state D with a rate of 1 per hour.
 - If in state D, the system moves to state B at the rate of 1 per hour, and to state E with a rate of 0.5 per hour.
 - (a) Write down the generator matrix Q.
 - (b) Describe why this chain has a limiting distribution $v = (v_1, v_2, \dots, v_5)$.
 - (c) Is this a time-reversible chain? Prove or disprove this.
 - (d) Write down 5 equations whose joint solution determine v.
- 7. (4 points) Let B_t denote Brownian motion, and define, for all t > 0 and some constants a > 0 and b > 0, $X_t = bB_{at}$.
 - (a) Define what it means that B_t is a Brownian motion.
 - (b) Compute the distribution of $X_1 + X_2$, expressed in terms of *a* and *b*.
 - (c) Determine a formula a and b need to satisfy in order for X_t to be Brownian motion, and prove that X_t is Brownian motion if a and b satisfy this formula.

Appendix: Some probability distributions

The Bernoulli distribution

If $x \in \{0, 1\}$ has a Bernoulli distribution with parameter $0 \le p \le 1$, then the probability mass function is

$$\pi(x) = p^x (1-p)^{1-x}.$$

We write $x \mid p \sim \text{Bernoulli}(p)$ and $\pi(x \mid p) = \text{Bernoulli}(x; p)$.

The Beta distribution

If $x \in [0, 1]$ has a Beta distribution with parameters with $\alpha > 0$ and $\beta > 0$ then the density is

$$\pi(x \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}.$$

We write $x \mid \alpha, \beta \sim \text{Beta}(\alpha, \beta)$ and $\pi(x \mid \alpha, \beta) = \text{Beta}(x; \alpha, \beta)$.

The Beta-Binomial distribution

If $x \in \{0, 1, 2, ..., n\}$ has a Beta-Binomial distribution, with *n* a positive integer and parameters $\alpha > 0$ and $\beta > 0$, then the probability mass function is

$$\pi(x \mid n, \alpha, \beta) = \binom{n}{x} \frac{\Gamma(x + \alpha)\Gamma(n - x + \beta)\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(n + \alpha + \beta)}.$$

We write $x \mid n, \alpha, \beta \sim \text{Beta-Binomial}(n, \alpha, \beta)$ and $\pi(x \mid n, \alpha, \beta) = \text{Beta-Binomial}(x; n, \alpha, \beta)$.

The Binomial distribution

If $x \in \{0, 1, 2, ..., n\}$ has a Binomial distribution, with *n* a positive integer and $0 \le p \le 1$, then the probability mass function is

$$\pi(x \mid n, p) = \binom{n}{x} p^x (1-p)^{n-x}.$$

We write $x \mid n, p \sim \text{Binomial}(n, p)$ and $\pi(x \mid n, p) = \text{Binomial}(x; n, p)$.

The Dirichlet distribution

If $x = (x_1, x_2, ..., x_n)$ has a Dirichlet distribution, with $x_i \ge 0$ and $\sum_{i=1}^n x_i = 1$ and with parameters $\alpha = (\alpha_1, ..., \alpha_n)$ with $\alpha_1 > 0, ..., \alpha_n > 0$, then the density function is

$$\pi(x \mid \alpha) = \frac{\Gamma(\alpha_1 + \alpha_2 + \dots + \alpha_n)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\cdots\Gamma(\alpha_n)} p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} \cdots p_n^{\alpha_n - 1}.$$

We write $x \mid \alpha \sim \text{Dirichlet}(\alpha)$ and $\pi(x \mid \alpha) = \text{Dirichlet}(x; \alpha)$.

The Exponential distribution

If $x \ge 0$ has an Exponential distribution with parameter $\lambda > 0$, then the density is

$$\pi(x \mid \lambda) = \lambda \exp(-\lambda x)$$

We write $x \mid \lambda \sim \text{Exponential}(\lambda)$ and $\pi(x \mid \lambda) = \text{Exponential}(x; \lambda)$. The expectation is $1/\lambda$ and the variance is $1/\lambda^2$.

The Gamma distribution

If x > 0 has a Gamma distribution with parameters $\alpha > 0$ and $\beta > 0$ then the density is

$$\pi(x \mid \alpha\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp(-\beta x).$$

We write $x \mid \alpha, \beta \sim \text{Gamma}(\alpha, \beta)$ and $\pi(x \mid \alpha, \beta) = \text{Gamma}(x; \alpha, \beta)$.

The Geometric distribution

If $x \in \{1, 2, 3, ...\}$ has a Geometric distribution with parameter $p \in (0, 1)$, the probability mass function is

$$\pi(x \mid p) = p(1-p)^{x-1}$$

We write $x \mid p \sim \text{Geometric}(p)$ and $\pi(x \mid p) = \text{Geometric}(x; p)$. The expectation is 1/p and the variance $(1 - p)/p^2$.

The Normal distribution

If the real x has a Normal distribution with parameters μ and σ^2 , its density is given by

$$\pi(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$

We write $x \mid \mu, \sigma^2 \sim \text{Normal}(\mu, \sigma^2)$ and $\pi(x \mid \mu, \sigma^2) = \text{Normal}(x; \mu, \sigma^2)$.

The Poisson distribution

If $x \in \{0, 1, 2, ...\}$ has Poisson distribution with parameter $\lambda > 0$ then the probability mass function is

$$e^{-\lambda}\frac{\lambda^{\lambda}}{x!}.$$

We write $x \mid \lambda \sim \text{Poisson}(\lambda)$ and $\pi(x \mid \lambda) = \text{Poisson}(x; \lambda)$.