Petter Mostad Applied Mathematics and Statistics Chalmers and GU

MVE550 Stochastic Processes and Bayesian Inference

Exam January 18, 2020, 14:00 - 18:00 Allowed aids: Chalmers-approved calculator. Total number of points: 30. To pass, at least 12 points are needed There is an appendix containing relevant information about some probability distributions.

- 1. (4 points) Assume a random variable *X* with values in the positive real numbers has density $\pi(x | \theta) = \theta^2 x \exp(-\theta x)$, where $\theta > 0$ is a parameter. Assume we use the improper prior $\pi(\theta) \propto 1/\theta$ $\pi(\theta) \propto_{\theta} 1/\theta$.
	- (a) Find a function of θ proportional to the posterior for θ given an observation *x*.
	- (b) Find the name and parameters of the posterior for θ given an observation *x*.
	- (c) Find the name and parameters of the posterior for θ after having made all the observations $x = 2.1$, $x = 1.2$, and $x = 3.9$.

Figure 1: The board for question 2.

2. (4 points) A game is played on a board consisting of 7×7 squares, see Figure 1. The game starts in the square in the middle of the board. In each move, one moves with equal probability to one of the directly adjacent squares: There are 4, 3, or 2 such adjacent squares, with squares on the edges and in the corners having fewer neighbours.

- (a) Show that the game can be described as a random walk on a graph.
- (b) Compute the expected number of steps until you are back at the central square of the board.
- 3. (5 points) In the offspring process of a Branching process, the probability to obtain 3 offspring is 4/13 and the probability to obtain 2 offspring is also 4/13. With the remaining probability, there is no offspring.
	- (a) Is the process supercritical, subcritical, or critical?
	- (b) What is the expected size of Z_n , the size of the *n*'th generation?
	- (c) Find the probability generating function for the offspring distribution.
	- (d) Compute the probability that the process goes extinct.
- 4. (3 points) What is the Ising model? Describe how one can use Gibbs sampling on this model. (For partial credit: Just describe how Gibbs sampling works).

Figure 2: The network for question 5.

- 5. (4 points) Consider the discrete time Markov chain on the three states 1, 2, 3 illustrated in Figure 2. The chain starts in state 1.
	- (a) Describe the communication classes of the chain. For each state, describe whether it is transient or recurrent.
	- (b) Compute the expected number of visits to state 2.
- 6. (6 points) A biological system is described by a continuous time Markov chain with 5 diffeerent possible states: A, B, C, D, and E. We have that
	- If in state A, the system stays there for an expected time of 2 hours, then moves to state B.
	- If in state C, the system stays there for an expected time of 3 hours, then moves to state B.
	- If in state E, the system stays there for an expected time of 4 hours, then moves to state D.
	- If in state B, the system moves to state A with a rate of 0.5 per hour, to state C with a rate of 0.5 per hour, and to state D with a rate of 1 per hour.
	- If in state D, the system moves to state B at the rate of 1 per hour, and to state E with a rate of 0.5 per hour.
	- (a) Write down the generator matrix *Q*.
	- (b) Describe why this chain has a limiting distribution $v = (v_1, v_2, \dots, v_5)$.
	- (c) Is this a time-reversible chain? Prove or disprove this.
	- (d) Write down 5 equations whose joint solution determine *v*.
- 7. (4 points) Let B_t denote Brownian motion, and define, for all $t > 0$ and some constants $a > 0$ and $b > 0$, $X_t = bB_{at}$.
	- (a) Define what it means that B_t is a Brownian motion.
	- (b) Compute the distribution of $X_1 + X_2$, expressed in terms of *a* and *b*.
	- (c) Determine a formula *a* and *b* need to satisfy in order for X_t to be Brownian motion, and prove that X_t is Brownian motion if a and b satisfy this formula.

Appendix: Some probability distributions

The Bernoulli distribution

If $x \in \{0, 1\}$ has a Bernoulli distribution with parameter $0 \le p \le 1$, then the probability mass function is

$$
\pi(x) = p^x (1 - p)^{1 - x}.
$$

We write $x | p \sim \text{Bernoulli}(p)$ and $\pi(x | p) = \text{Bernoulli}(x; p)$.

The Beta distribution

If $x \in [0, 1]$ has a Beta distribution with parameters with $\alpha > 0$ and $\beta > 0$ then the density is

$$
\pi(x \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}.
$$

We write $x \mid \alpha, \beta \sim \text{Beta}(\alpha, \beta)$ and $\pi(x \mid \alpha, \beta) = \text{Beta}(x; \alpha, \beta)$.

The Beta-Binomial distribution

If $x \in \{0, 1, 2, \ldots, n\}$ has a Beta-Binomial distribution, with *n* a positive integer and parameters $\alpha > 0$ and $\beta > 0$, then the probability mass function is

$$
\pi(x \mid n, \alpha, \beta) = {n \choose x} \frac{\Gamma(x + \alpha)\Gamma(n - x + \beta)\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(n + \alpha + \beta)}.
$$

We write $x \mid n, \alpha, \beta \sim$ Beta-Binomial (n, α, β) and $\pi(x \mid n, \alpha, \beta)$ = Beta-Binomial $(x; n, \alpha, \beta)$.

The Binomial distribution

If $x \in \{0, 1, 2, \ldots, n\}$ has a Binomial distribution, with *n* a positive integer and $0 \le p \le 1$, then the probability mass function is

$$
\pi(x \mid n, p) = {n \choose x} p^{x} (1-p)^{n-x}.
$$

We write $x \mid n, p \sim \text{Binomial}(n, p)$ and $\pi(x \mid n, p) = \text{Binomial}(x; n, p)$.

The Dirichlet distribution

If $x = (x_1, x_2, \dots, x_n)$ has a Dirichlet distribution, with $x_i \ge 0$ and $\sum_{i=1}^n x_i = 1$ and with parameters $\alpha = (\alpha_1, \alpha_2)$ with $\alpha_i > 0$ are $\alpha > 0$ then the density function is $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $\alpha_1 > 0, \ldots, \alpha_n > 0$, then the density function is

$$
\pi(x \mid \alpha) = \frac{\Gamma(\alpha_1 + \alpha_2 + \cdots + \alpha_n)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\cdots\Gamma(\alpha_n)} p_1^{\alpha_1-1} p_2^{\alpha_2-1} \cdots p_n^{\alpha_n-1}.
$$

We write $x \mid \alpha \sim \text{Dirichlet}(\alpha)$ and $\pi(x \mid \alpha) = \text{Dirichlet}(x; \alpha)$.

The Exponential distribution

If $x \ge 0$ has an Exponential distribution with parameter $\lambda > 0$, then the density is

$$
\pi(x \mid \lambda) = \lambda \exp(-\lambda x)
$$

We write $x \mid \lambda \sim$ Exponential(λ) and $\pi(x \mid \lambda) =$ Exponential($x; \lambda$). The expectation is $1/\lambda$ and the variance is $1/\lambda^2$.

The Gamma distribution

If $x > 0$ has a Gamma distribution with parameters $\alpha > 0$ and $\beta > 0$ then the density is

$$
\pi(x \mid \alpha \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} \exp(-\beta x).
$$

We write $x \mid \alpha, \beta \sim \text{Gamma}(\alpha, \beta)$ and $\pi(x \mid \alpha, \beta) = \text{Gamma}(x; \alpha, \beta)$.

The Geometric distribution

If $x \in \{1, 2, 3, \dots\}$ has a Geometric distribution with parameter $p \in (0, 1)$, the probability mass function is

$$
\pi(x \mid p) = p(1 - p)^{x-1}
$$

We write $x \mid p \sim$ Geometric(*p*) and $\pi(x \mid p)$ = Geometric(*x*; *p*). The expectation is $1/p$ and the variance $(1 - p)/p^2$.

The Normal distribution

If the real *x* has a Normal distribution with parameters μ and σ^2 , its density is given by

$$
\pi(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).
$$

We write $x \mid \mu, \sigma^2 \sim \text{Normal}(\mu, \sigma^2)$ and $\pi(x \mid \mu, \sigma^2) = \text{Normal}(x; \mu, \sigma^2)$.

The Poisson distribution

If $x \in \{0, 1, 2, \ldots\}$ has Poisson distribution with parameter $\lambda > 0$ then the probability mass function is *x*

$$
e^{-\lambda}\frac{\lambda^x}{x!}.
$$

We write $x | \lambda \sim \text{Poisson}(\lambda)$ and $\pi(x | \lambda) = \text{Poisson}(x; \lambda)$.