Petter Mostad Applied Mathematics and Statistics Chalmers

Suggested solutions for MVE550 Stochastic Processes and Bayesian Inference Exam April 24 2019

- 1. (a) A regular transition matrix *P* is a transition matrix such that there is an $n > 0$ such that $Pⁿ$ is a positive matrix: A positive matrix is one where all the elements are positive.
	- (b) A communication class is a subset *S* of states such that, for all $i, j \in S$, there are *n* > 0 and *m* > 0 such that $P_{ij}^m > 0$ and $P_{ij}^n > 0$, while for any pair $i \in S$ and $j \notin S$, this is not the case. A closed communication class is a communication class with a this is not the case. A closed communication class is a communication class with a zero probability of ever leaving the class.
	- (c) A state *j* is transient if the probability that a chain starting at *j* will ever return to *j* is less than 1.
	- (d) A state *j* is positive recurrent if the expected number of steps for a chain to return to *j* if it starts at *j* is finite.
	- (e) A finite state space Markov chain is ergodic if it is irreducible and aperiodic.
	- (f) Time reversibility means that, for all states *i* and j , $\pi_i P_{ij} = \pi_j P_{ji}$.
- 2. (a) Using Bayes theorem we get

$$
\pi(\lambda | x) \propto_{\lambda} \pi(x | \lambda)\pi(\lambda)
$$

\n
$$
\propto_{\lambda} \text{Exponential}(x; \lambda) \text{Gamma}(\lambda; \alpha, \beta)
$$

\n
$$
\propto_{\lambda} \lambda \cdot \exp(-\lambda x) \cdot \lambda^{\alpha-1} \cdot \exp(-\beta \lambda)
$$

\n
$$
\propto_{\lambda} \lambda^{\alpha} \cdot \exp(-(\beta + x)\lambda)
$$

\n
$$
\propto_{\lambda} \text{Gamma}(\lambda; \alpha + 1, \beta + x)
$$

In other words, the posterior distribution is a Gamma distribution with parameters $\alpha + 1$ and $\beta + x$.

(b) The prior corresponds to a $Gamma(0, 0)$ distribution. The posterior is obtained by updating the Gamma distribution as in (a) with the data given, resulting in the posterior

 $Gamma(3, 1.2 + 1.7 + 0.9) = Gamma(3, 3.8).$

3. (a) We get the transition matrix

$$
P = \begin{bmatrix} 0.1 & 0.3 & 0.6 & 0 \\ 0.1 & 0.2 & 0.3 & 0.4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.
$$

(b) We get

$$
Q = \begin{bmatrix} 0.1 & 0.3 \\ 0.1 & 0.2 \end{bmatrix}
$$

and so

$$
F = (I - Q)^{-1} = \begin{bmatrix} 0.9 & -0.3 \\ -0.1 & 0.8 \end{bmatrix}^{-1} = \frac{1}{0.9 \cdot 0.8 - 0.3 \cdot 0.1} \begin{bmatrix} 0.8 & 0.3 \\ 0.1 & 0.9 \end{bmatrix}
$$

$$
= \frac{1}{0.69} \begin{bmatrix} 0.8 & 0.3 \\ 0.1 & 0.9 \end{bmatrix} = \begin{bmatrix} 1.1594 & 0.4348 \\ 0.1449 & 1.3043 \end{bmatrix}.
$$

(c) We have

$$
R = \begin{bmatrix} 0.6 & 0 \\ 0.3 & 0.4 \end{bmatrix}
$$

and thus

$$
FR = \frac{1}{0.69} \begin{bmatrix} 0.8 & 0.3 \\ 0.1 & 0.9 \end{bmatrix} \begin{bmatrix} 0.6 & 0 \\ 0.3 & 0.4 \end{bmatrix} = \frac{1}{0.69} \begin{bmatrix} 0.57 & 0.12 \\ 0.33 & 0.36 \end{bmatrix}.
$$

Thus the probability for a process that starts in state 1 to be absorbed in state 4 is $\frac{0.12}{0.69} = 0.1739.$

4. Assume $X_0, X_1, \ldots, X_n, \ldots$ is an ergodic Markov chain with stationary distribution π . Let *r* be a bounded real-valued function. Then

$$
\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n r(X_i) = \mathrm{E}(r(X))
$$

where *X* is a random variable with distribution π .

5. The holding time parameters are $q = (2, 3, 4)$. The embedded chain transition matrix is

$$
\tilde{P} = \begin{bmatrix} 0 & 0.6 & 0.4 \\ 0.9 & 0 & 0.1 \\ 1 & 0 & 0 \end{bmatrix}.
$$

Thus the generator matrix becomes

$$
Q = \begin{bmatrix} -2 & 1.2 & 0.8 \\ 2.7 & -3 & 0.3 \\ 4 & 0 & -4 \end{bmatrix}
$$

The linear system $\pi Q = 0$ gives

$$
-2\pi_1 + 2.7\pi_2 + 4\pi_3 = 0
$$

$$
1.2\pi_1 - 3\pi_2 = 0
$$

$$
0.8\pi_1 + 0.3\pi_2 - 4\pi_3 = 0
$$

with solution $\pi = \frac{1}{163}(100, 40, 23)$. Thus, the long-term proportion of time that the component spends in state A is $100/163 = 0.6135$.

- 6. A hidded Markov model consists of a Markov chain X_1, X_2, \ldots, X_n of "hidden" random variables, and another sequence Y_1, \ldots, Y_n of variables such that the distribution of Y_i only depends on X_i , and possibly on Y_{i-1} . Thes latter variables are the "observed" variables. If the values of the variables Y_i are indeed observed, the posterior distribution for one of the hidden variables, say X_i can be found as follows: In a "Forward" part of the algorithm, for $j = 1, \ldots, i$, the posterior for X_j given Y_1, \ldots, Y_j is found in a recursive algorithm. In a "Backward" part of the algorithm for $i = n$ is the likelihoods for *X*, given the data a "Backward" part of the algorithm, for $j = n, \ldots, i$, the likelihoods for X_j given the data Y_j, \ldots, Y_n are found in a recursive algorithm. Then the two are put together to find the marginal posterior for Y_j . marginal posterior for *Xⁱ* .
- 7. (a) The events that three requests of type A arrive during the time unit and that four requests of type B arrive during the time unit are independent, and the probability of both can be computed using the Poisson probability mass function. Thus the answer is

$$
e^{-\lambda_A} \frac{\lambda_A^3}{3!} e^{-\lambda_B} \frac{\lambda_B^4}{4!} = e^{-3} \frac{3^3}{3!} e^{-2} \frac{2^4}{4!} = 3 e^{-5} = 0.02021384.
$$

(b) The probability of the first event being a request of type A or B is $\frac{\lambda_A}{\lambda_A + \lambda_B}$, respectively $\frac{\lambda}{\lambda_A + \lambda_B}$. As the successive events are independent, the probability asked for is

$$
\left(\frac{\lambda_A}{\lambda_A + \lambda_B}\right)^3 \left(\frac{\lambda_B}{\lambda_A + \lambda_B}\right)^4 = \frac{\lambda_A^3 \lambda_B^4}{(\lambda_A + \lambda_B)^7}.
$$

8. We have

$$
E(X_t | W_3) = a + b(E(B_t) + E(W_{3+t} | W_3)) = a + bW_3.
$$

Setting this to zero gives $a + bW_3 = 0$. Further,

$$
Var(X_t | W_3) = b^2 (Var(B_t) + Var(W_{3+t} | W_3)) = b^2(t + t)
$$

and setting this to *t* gives $2b^2 = 1$. Thus we must have $b = \frac{1}{\sqrt{2}}$ and $a = -\frac{1}{\sqrt{2}}W_3$. On the other hand, with these values,

$$
X_t \mid W_3 = \frac{1}{\sqrt{2}} (B_t + (W_{3+t} - W_3)) = \frac{1}{\sqrt{2}} (B_t + B'_t)
$$

where B_t ^t is an independent copy of Brownian motion. We see that this is in fact Brownian motion, for example by checking that it is a Gaussian process fulfilling the requirements for a Brownian motion.