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1. (a) A regular transition matrix P is a transition matrix such that there is an n > 0 such that
Pn is a positive matrix: A positive matrix is one where all the elements are positive.

(b) A communication class is a subset S of states such that, for all i, j ∈ S , there are
n > 0 and m > 0 such that Pm

i j > 0 and Pn
i j > 0, while for any pair i ∈ S and j < S ,

this is not the case. A closed communication class is a communication class with a
zero probability of ever leaving the class.

(c) A state j is transient if the probability that a chain starting at j will ever return to j is
less than 1.

(d) A state j is positive recurrent if the expected number of steps for a chain to return to
j if it starts at j is finite.

(e) A finite state space Markov chain is ergodic if it is irreducible and aperiodic.

(f) Time reversibility means that, for all states i and j, πiPi j = π jP ji.

2. (a) Using Bayes theorem we get

π(λ | x) ∝λ π(x | λ)π(λ)
∝λ Exponential(x; λ) Gamma(λ;α, β)
∝λ λ · exp(−λx) · λα−1 · exp(−βλ)
∝λ λα · exp(−(β + x)λ)
∝λ Gamma(λ;α + 1, β + x)

In other words, the posterior distribution is a Gamma distribution with parameters
α + 1 and β + x.

(b) The prior corresponds to a Gamma(0, 0) distribution. The posterior is obtained by
updating the Gamma distribution as in (a) with the data given, resulting in the poste-
rior

Gamma(3, 1.2 + 1.7 + 0.9) = Gamma(3, 3.8).

3. (a) We get the transition matrix

P =


0.1 0.3 0.6 0
0.1 0.2 0.3 0.4
0 0 1 0
0 0 0 1

 .



(b) We get

Q =
[
0.1 0.3
0.1 0.2

]
and so

F = (I − Q)−1 =

[
0.9 −0.3
−0.1 0.8

]−1

=
1

0.9 · 0.8 − 0.3 · 0.1

[
0.8 0.3
0.1 0.9

]
=

1
0.69

[
0.8 0.3
0.1 0.9

]
=

[
1.1594 0.4348
0.1449 1.3043

]
.

(c) We have

R =
[
0.6 0
0.3 0.4

]
and thus

FR =
1

0.69

[
0.8 0.3
0.1 0.9

] [
0.6 0
0.3 0.4

]
=

1
0.69

[
0.57 0.12
0.33 0.36

]
.

Thus the probability for a process that starts in state 1 to be absorbed in state 4 is
0.12
0.69 = 0.1739.

4. Assume X0, X1, . . . , Xn, . . . is an ergodic Markov chain with stationary distribution π. Let
r be a bounded real-valued function. Then

lim
n→∞

1
n

n∑
i=1

r(Xi) = E(r(X))

where X is a random variable with distribution π.

5. The holding time parameters are q = (2, 3, 4). The embedded chain transition matrix is

P̃ =

 0 0.6 0.4
0.9 0 0.1
1 0 0

 .
Thus the generator matrix becomes

Q =

−2 1.2 0.8
2.7 −3 0.3
4 0 −4

 .
The linear system πQ = 0 gives

−2π1 + 2.7π2 + 4π3 = 0
1.2π1 − 3π2 = 0

0.8π1 + 0.3π2 − 4π3 = 0

with solution π = 1
163 (100, 40, 23). Thus, the long-term proportion of time that the compo-

nent spends in state A is 100/163 = 0.6135.



6. A hidded Markov model consists of a Markov chain X1, X2, . . . , Xn of “hidden” random
variables, and another sequence Y1, . . . ,Yn of variables such that the distribution of Yi only
depends on Xi, and possibly on Yi−1. Thes latter variables are the “observed” variables. If
the values of the variables Yi are indeed observed, the posterior distribution for one of the
hidden variables, say Xi can be found as follows: In a “Forward” part of the algorithm,
for j = 1, . . . , i, the posterior for X j given Y1, . . . ,Y j is found in a recursive algorithm. In
a “Backward” part of the algorithm, for j = n, . . . , i, the likelihoods for X j given the data
Y j, . . . ,Yn are found in a recursive algorithm. Then the two are put together to find the
marginal posterior for Xi.

7. (a) The events that three requests of type A arrive during the time unit and that four
requests of type B arrive during the time unit are independent, and the probability of
both can be computed using the Poisson probability mass function. Thus the answer
is

e−λA
λ3

A

3!
e−λB

λ4
B

4!
= e−3 33

3!
e−2 24

4!
= 3e−5 = 0.02021384.

(b) The probability of the first event being a request of type A or B is λA
λA+λB

, respectively
λB

λA+λB
. As the successive events are independent, the probability asked for is(

λA

λA + λB

)3 (
λB

λA + λB

)4

=
λ3

Aλ
4
B

(λA + λB)7 .

8. We have
E(Xt | W3) = a + b(E(Bt) + E(W3+t | W3)) = a + bW3.

Setting this to zero gives a + bW3 = 0. Further,

Var(Xt | W3) = b2 (Var(Bt) + Var(W3+t | W3)) = b2(t + t)

and setting this to t gives 2b2 = 1. Thus we must have b = 1
√

2
and a = − 1

√
2
W3. On the

other hand, with these values,

Xt | W3 =
1
√

2
(Bt + (W3+t −W3)) =

1
√

2
(Bt + B′t)

where B′t is an independent copy of Brownian motion. We see that this is in fact Brownian
motion, for example by checking that it is a Gaussian process fulfilling the requirements
for a Brownian motion.


