VSM167 Finite element method - basics
Re-exam 2019-04-26, 14:00-18:00

Instructor:

Solution:

Grading:

Review:

Permissible aids:

Martin Fagerstrom (phone 070-224 8731). The instructor will visit the exam
around 15:00 and 16:30.

Example solutions will be posted within a few days after the exam on the
course homepage.

The grades will be reported to the registration office on Friday 10 May 2019
the latest.

It will be possible to review the grading at the Division of Material and Com-
putational Mechanics (floor 3 in M-building). Please make an appointment
with Martin Fagerstrom if you wish to review the exam and/or discuss the
grades.

Chalmers type approved pocket calculator. Note: A formula sheet is ap-
pended to this exam thesis.







Problem 1

Consider a cylinder to be used in a shaft shrink-fit, see Figure la. To expand the
cylinder such that it can be placed on the outside of the two shafts to be connected,
the cylinder is heated by subjecting it to an internal heat flux § on the internal
surface.

The heat is supplied in such a way that no temperature variations occur neither in
the circumferential direction, nor in the longitudinal direction. This means that it is
enough to consider a 1D heat flow problem (in the radial direction) to calculate the
temperature distribution in the cylinder. For this case, the 1D heat flow is given by
Fourier’s law as g(r) = —k(r)%L. Furthermore, the conditions on the outer surface
of the cylinder is to be considered as convective, with the heat transfer coefficient o
and external temperature 1.

To derive the governing equations, it is helpful to consider a small section of the
cylinder (given by a small circumferential angle A¢) at the radial position r, see
Figure 1b. As no heat (except for that supplied to the inner surface of the cylinder)
is added to the system, a simple heat balance gives at hand that:

q(r) - A(r) = q(r + Ar) - A(r + Ar) = constant, or d% (q(r)A(r)) =0

where A(r) is the surface area at coordinate r equal to:
A(r)=A¢-r-L

where L is the length of the cylinder. Since this length is constant over r, and since
not variations occur in the circumferential direction, the heat balance equation can

be simplified to:
d

o (ra(r) =0.
q(r+Ar)
s
""""""""" Ar,
(5 q(r)
Ag

Figure 1: a) Cylinder to be considered in Problem 1 subjected to an internal heat
g. b) Close up of a small piece of the cylinder at radial coordinate r.

Tasks on the next page!



Tasks:

(a) By considering the 1D heat flow balance in the radial direction, derive and
state the strong form of the problem. (0.5p)

(b) Given the strong form of the problem, derive and state the full weak form
of the problem at hand. (1.0p)

(c) Given the weak form of the problem, derive and state the FE form of the
problem at hand. Be careful to explain the contents of any vectors or matrices
you introduce. (0.5p)

(d) Consider specifically a problem with a constant heat conductivity k(r) = k, dis-
cretised with five 1D elements with linear shape functions. Calculate the element
stiffness (also denoted conductivity) matrix for the outer-most element
(the element with one node on the outer surface). (0.5p)

(e) For the same problem, calculate any contribution to the global stiffness
(also denoted conductivity) matrix associated with the boundary condi-
tions. (0.5p)



Problem 2

Consider the water divider as shown in Figure 2. As a result of the separation of
water flow, shear tractions act on the outer surface as indicated in the figure (let us
disregard any traction component normal to the surface). In particular, the shear
traction are constant (with magnitude equal to 7) on the inclined surfaces (from
node 4 to 8 and from node 4 to 1, respectively), and decreases from left to right
along the planar edges (from node 8 to 10 and from node 1 to 3 respectively).
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i unfortunately, the dimensions given in the figure did

not really match the sketch. But the solution is

adapted after the values given
Figure 2: Water divider considered in Problem 2.

As no variations are considered perpendicular to the plane shown in Figure 2, the
problem can be considered as a 2D plane strain problem. The governing 2D elasticity
equation on weak form for this problem is generally given by:

- T ~
/(w;) DVutdAz/vatdA+/ thtd£+/ vihtdl
A A Ly Lp,

where A denotes the area of the specimen, ¢ its thickness, v = [v,,v,]T a vector
arbitrary weight function, u = [u,, u,]|” the displacement field (x- and y-component),
L, the part of the boundary with prescribed degrees of freedom (g), £}, the part of
the boundary with prescribed tractions (h) and where D is the constitutive matrix
relating stresses (o) and strains (€ = V) on Voigt form such that

o = De.
As the problem is under the state of plane strain, the D—matrix becomes
E 1—v v 0

D = v 1—v 0

Task on the next page!



Tasks:

(a) Introduce suitable FE approximations for v and w and then derive and state
the FE formulation of the current problem. Be careful to clearly indicate the
contents of any matrices you introduce (or you will not be able to get full points for
this subtask).  (1.0p)

Please note that there is no need at this point to introduce the specific form of the
traction boundary conditions.

(b) Do the following;:

Define an appropriate numbering scheme for the degrees-of-freedom as-
sociated with the displacement field.

Define the topology matrix Edof (or similar) corresponding to your numbering
scheme which links degrees-of-freedom to the element numbering. It is enough to

write the first two lines of that matrix. On %W-
w1
exaw
«w
A be

(c) Consider specifically element 1 and the edge between nodes 4 and 8. For this CLS L{.@ J
edge, define the traction vector expressed in the global coordinates that is

acting on this edge. Then use this to calculate that traction contribution 1:

to the global load vector. For full points, both the values and how these are

assembled needs to be correctly explained.  (1.0p) a C -qua/ /

Finally,write down, with pen and paper, the MATLAB code necessary to as-
semble the element stiffness matrix (you may call it Ke) into the global stiffness
matrix (K).

wni te the Code
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Problem 3

Please consider the 2D heat flow problem in Figure 3. The geometry is correspondjng
to Cooks memQrane for which the upper and lower boundaries are to be congidered
as convective with_heat transfer coefficient . Furthermore, the left bguhdary is
insulated and the right boundary is subjected to a time-varying extegrfal heat flux
q(7) adding heat to th&\body (see the figure). At time 7 = 0, the’temperature of
the membrane is uniform »ad equal to the outer temperature 2,,;.
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Figure 3: stration of the Cooks membrane problem for transient\¢D heat flow
(Problepa 3)

Asks:

(a) By considering the heat balance of a subdomain €’ of the membrane, please
derive aird state the strong form of the current 2D initial beumnidary value
problem to determine the temperature distribution histery for 7 > 0. In the
derivations, please alSo~¢onsider the possibility of heving an external heat supply Q.

(1.0p)

More tasks on the next page!



(b) The corresponding weak form of the governing equation for this particyldr prob-
lem (uniform thickness) is given by:

/ vpcT dA + / (Vo) DVTdA = — /
A A

vg, dL + JvQdA

c A

where™ s an arbitrary weight function, A is the domajf of the membrane, p is
the densitinof the material, ¢ is the specific heat, T i the time derivative of the
temperature, s the outer boundary, D is the mag€rial conductivity matrix, V is
the 2D gradient operator, () is the external heat/Supply and ¢, is the heat outflux

at the boundary.

Introduce suitable FE approximsagions fov and T and then derive and state the
semi-discrete FE formulation (Wiiout introducing any time stepping scheme)
of the initial boundary value probles. 1.0p)

(c) Under the assumption thaythe temperature »agies linearly between two instants
in time, 7,, and 7,41 (with /7,11 — 7, = A7 ) such that the degrees of freedom at
time 7,49 = 7, + OAT is gfven by:

a,f=a,+0(a,1—a,) =(1-0)a,+ 0a,

please derive th€ matrix equations on the form:

K(0)ani1 = f(0)

that cah be used to calculate the temperature distribution at time 7 =
7o (1.0p)

Hint: Please note that in this format f(#) will depend on boundary conditions and
the external heat supply, but also on the values of the degrees-of-freedom from time
step 7,.



1 Shape functions

1.1 1D, linear

) (1a) L
1 o—eo
N§ = Z(x—azl) (1b)
1.2 1D, quadratic
. 2
Ny = ﬁ(%*lﬁ)(l’*ﬂfg) (2a)
4 1 2 3
N3 = —ﬁ(x —xz1)(x — x3) (2b) o—o—o
2
N§ = = (0 — 1)z — ) (2¢)
1.3 2D, linear triangle
3
1
Ny = ﬂ(ﬂbys —x3y2 + (Y2 —y3)v + (z3 —72)y)  (3a)
2
1
N5 = o (asys = @iys + (g3 — g2 + (01— a3)y)  (3b) -
1
Ng = ﬂ(xlm — @Y1+ (Y1 —y2)r + (2 —71)y)  (3¢)
Parent element: n
Ni=1-¢-n (4a) 3
Ny=¢ (4b)
Ny=1 (4c)
1 2
®

1.4 2D, Quadratic triangle

Parent element:

Ny =(1-¢—n)(1-2€—2n) (5a)
Ny =¢(26-1) (5b)
Ny=mn(2n-1) (5¢)
Ny =4¢(1—¢—n) (5d)
Ny = 4¢n (5e)
Ng=4n(1—€—n) (5f) K




1.5 2D, bilinear

2b
N = (o = a2)y — o) (6a) 1e———e3
N§ =~ (o =)y~ ) (60) %
N§ = ooz~ )y~ v2) (60) , ,
Nf = 1 (@ — )y — 1) (64)
n
Parent element:
—e 1 40— o3
Ni=1(€E-Dn-1) (7a)
Ny=—3E+)@m-1) (7b) i ¢
Ni= €+ D)0+ 1) (70) Y S
Ni=—3E- D@+ (7d)

2 Gauss points

Table 1: Position of Gauss points &; and corresponding weight W; for n Gauss points.

n &i

Wi

1 0.0000000000000000

2.0000000000000000

2 £0.5773502691896257

1.0000000000000000

0.0000000000000000
+0.7745966692414834

0.8888888888888889
0.5555555555555556

£0.3399810435848563
+0.8611363115940525

0.6521451548625460
0.3478548451374544

n no (&,m) Wi
L (53) 3

(5:5) 5

5@y

¢ (5:3) &

3 Green-Gauss theorem

w = vector field, ¢ = scalar field, n = normal to L.

/A opVTwdA + /A (Vo) TwdA = / n" (pw)dL

L



4 Gauss divergence theorem

w = vector field, ¢ = scalar field, n = normal to £, div(w) = VTw.

[ 9w aa = [ ow)"na

5 Isoparametric mapping

Parent domain Global domain
n
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6 Matrix inversion
The inverse of the matrix M = [ ]]\\21 %;Z } is given by:
1 M- —M
-1 _ 22 12 . _ B
= 7det(1\/_[) |: —M21 M11 :| s with det(M) = M11M22 M12M21.

7 Stresses and strains

Hooke’s generalised law: o = De

Ouy 2 0
ox oz
. . . Eaa a'UJy ~ Uy ~ 0 g
2D Strain-displ. relation: e = | gy, | = (“)7y =Vu, u= w. | V = oy
Yy
b Ouy | Ouy 2 0
dy oz Jy Oz
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