
VSM167 Finite element method - basics

Exam 2019-01-18, 8:30-12:30

Instructor: Martin Fagerström (phone 070-224 8731). The instructor will visit the exam
around 9:30 and 11:30.

Solution: Example solutions will be posted within a few days after the exam on the
course homepage.

Grading: The grades will be reported to the registration office on Friday 1 February
2019 the latest.

Review: It will be possible to review the grading at the Division of Material and Com-
putational Mechanics (floor 3 in M-building). Please make an appointment
with Martin Fagerström if you wish to review the exam and/or discuss the
grades.

Permissible aids: Chalmers type approved pocket calculator. Note: A formula sheet is ap-
pended to this exam thesis.





Problem 1

Consider a wall as in Figure 1 (next page) with an outer layer of concrete (thickness
h1), a middle layer of mineral wool (thickness h2) and an internal layer of plaster
(thickness h3). The material properties of the concrete, the mineral wool and the
plaster are:

Thermal conductivity: k1, k2 and k3;
Density: ρ1, ρ2 and ρ3; and
Specific heat capacity: c1, c2 and c3, respectively.

At the inner and outer surfaces, the heat transfer coefficients are αout and αin, re-
spectively.

It is of design interest to calculate the wall temperature distribution (and its varia-
tion in time), especially the temperature values at the material interfaces as well as
on the outside and on the inside of the wall, i.e. T1(τ)− T4(τ) (see the figure).

In the initial steady state condition, the inner air temperature is T = Tin, and the
outside air temperature is T = Tout. The solution of the steady state is such that
the temperature variation through the wall is T (x, τ = 0) = T 0(x) yielding the
temperatures T1 − T4 as: 

T1(τ = 0)
T2(τ = 0)
T3(τ = 0)
T4(τ = 0)

 =


T 0
1

T 0
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T 0
3

T 0
4

 .

In the transient case, there is a sudden drop of the outside air temperature down to
T = T . For the analysis, it is considered sufficient to assume that this change in
temperature occurs instantaneously at the time τ = 0.

A simple heat balance including the ability for the material to store heat reveals
that:

ρcṪ = − d

dx
(Aq) +Q

where c is the specific heat capacity, Ṫ = dT/dτ is rate of temperature increase, A
is the wall cross section area (can be assumed to be unity for simplicity), q is the
heat flux and Q is the external heat supply. Moreover, the heat flux is considered
to obey Fourier’s law such that

q = −k(x)
dT

dx
.

Figure and tasks on the next page
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Figure 1: Geometry of the studied wall.

Tasks:
(a) Based on the general heat balance above, derive and state the weak formu-
lation of the current transient problem from τ = 0 and onwards. (1.0p)

(b) Using Galerkin’s method, derive and state the semi-discrete FE-formulation
for the transient case where the wall is discretised into N elements along x. Please
note that you do not need to introduce any time integration scheme (such as the
Generalized Midpoint Rule) for this task. However, be specific on the contents of
any matrices you introduce (but you do not need to get to the level of detail of
expressions for individual shape functions and their derivatives). (0.5p)

(c) How many element with linear approximation of the temperature field
(through the thickness) would be needed to find the solution T 0

1 − T 0
4 in

the stationary case? Clearly motivate your answer (if the answer is correct but
the motivation is wrong or missing there will be no points awarded) (0.5p)

(d) Does the number of elements required for an accurate solution change
if you are to consider the transient case with a sudden drop of the outside
temperature? Motivate why or why not. Again, a clear motivation is needed to
give points. (0.5p)

(e) Based on your FE-formulation derived in Task (b), calculate the element
capacity matrix, often denoted Ce, for an element with length Le = h2/4 in
the mineral wool section of the wall. (0.5p)



Problem 2

Consider a concrete hot-water pipeline with an internal cylindrical hole for the water,
cf. the rectangular cross-section sketch in Figure 2 (right). It is assumed that the
puipeline has reached a steady state temperature distribution and that no heat is
transferred along the pipeline whereby a simplification to a 2D stationary heat flow
problem can be made.
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Figure 2: (left): Close-up of element no 1 analysed in subtasks (b) and (c). (right):
Analysed cross-section of the hot water pipeline, indicating also parts of the FE
mesh (in the lower left part).

For the whole cross-section, the boundary value problem for T (x, y) on strong form
becomes

∇Tq = 0 in Ω,

qn = 0 on L1,

qn = α[T − Tair] on L2,L3,L4,

qn = α[T − Tw] on L5.

The concrete is assumed to be isotropic (w.r.t heat flow) and obey Fourier’s law
q = −k∇T with the thermal conductivity, k, assumed to be constant. For simplic-
ity, the transfer coefficient α is assumed to be the same along all boundaries.

For the analysis, the cross-section is discretised in terms of 4-node isoparametric
bilinear elements (as indicated in the lower left corner of the figure). In subtasks (b)
and (c) below, one of these elements (element no 1) will be analysed more in detail.
As shown in cf. Figure 2 (left), it has the nodal coordinates:

(x1, y1) = (0, 0), (x2, y2) = (a, 0), (x6, y6) = (0, a), (x7, y7) = (6a/5, a).

The corresponding parent element occupies (as always) the domain −1 ≤ ξ ≤ 1,
−1 ≤ η ≤ 1 in the local coordinates (ξ, η). Tasks on the next page.



(a) Determine the smallest part of the cross section that can be analysed
(with respect to symmetry conditions). For this domain, derive the weak form
corresponding to the strong form above in the general format without
suppressing boundary reactions. (For simplicity, heat flow in a ”slice” of thick-
ness t = 1 (m) can be considered). Note that you may have to make an additional
sketch of the domain that is analysed (in order to clarify any boundary condition
statements). (1.0p)

(b) For the lower left element (element no 1), compute the Jacobian matrix
and its determinant associated with the isoparametric mapping in the
midpoint of the element edge between nodes 2 and 6 (marked with a red
X). (1.0p)

(c) Given a solution of the temperature field in the nodes according to

T1 = 3 ◦C

T2 = 4 ◦C

T6 = 2 ◦C and

T7 = 5 ◦C

set up the expression to compute the gradient of the temperature ∇T in
the same point as in Task (b) (marked with a red X in the figure). Please note
that if your expression involves matrix multiplications, each matrix component needs
to be defined but there is no need to actually perform the matrix multiplications.
(1.0p)



Problem 3

The Cook membrane problem is a classical 2D test case for linear static analysis
named after the author, R. D. Cook who first reported it in 1974. The structure
consist of a trapezoidal surface in the x − y plane (see figure). The structure is
clamped along the left edge and it is loaded by a edge shear traction load ty along
the right edge.

In the figure below (right) there is a close up of the element discretisation at the
upper left corner.
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Figure 3: Illustration of the Cooks membrane problem (Problem 3)

The governing 2D elasticity equation on weak form for this problem is generally
given by:∫

A

(
∇̃v
)T
D∇̃u t dA =

∫
A

vTb t dA+

∫
Lg
vTt t dL+

∫
Lh
vTh t dL

where A denotes the area of the specimen, t its thickness, Lg the part of the boundary
with prescribed degrees of freedom (g), Lh the part of the boundary with prescribed
tractions (h) and whereD is the constitutive matrix relating stresses (σ) and strains
(ε = ∇̃u) on Voigt form such that

σ = Dε.

The Cooks membrane problem is under the state of plain strain whereby theD−matrix
becomes

D =
E

(1 + ν)(1− 2ν)

 1− ν ν 0
ν 1− ν 0
0 0 1

2
(1− 2ν)

 .
Tasks on the next page.



(a) Create your own sketch of the problem and indicate, specifically for
the current problem, the different types of boundaries and boundary condi-
tions. Then, derive the FE-form of the problem using Galerkin’s method.
Specify the contents (in general terms) of any matrices or vectors you introduce.
No explicit expressions for shape functions or their derivatives are necessary in this
part. (1.0p)

b) The specimen is meshed with linear triangular elements as indicated in the left
part the figure. Consider specifically element no 44 (with nodes 4, 76 & 46),
indicated to the right, and define a matrix expression for calculating its ele-
ment stiffness matrix (Ke). Here, you do not have to perform the actual matrix
multiplications. But all matrix components in the resulting expression needs to be
clearly defined for full point! You must also explain how any integrals are evaluated.
(1.0p)

Here, it can be shown that the element stiffness matrix is only dependent on the rel-
ative difference of the initial nodal positions which means that for this subtask you
can place the origin from which you define the nodal coordinates anywhere you want.

(c) Calculate the element load vector contribution from the applied trac-
tion on the right edge of element 44 and explain how this enters into
the global load vector. You may have to suggest a numbering scheme for the
degrees-of-freedom to solve this task fully. (1.0p)



1 Shape functions

1.1 1D, linear

Ne
1 = − 1

L
(x− x2) (1a)

Ne
2 =

1

L
(x− x1) (1b)

1 2

1.2 1D, quadratic
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2
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(x− x2)(x− x3) (2a)

Ne
2 = − 4

L2
(x− x1)(x− x3) (2b)
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3 =

2

L2
(x− x1)(x− x2) (2c)

1 2 3

1.3 2D, linear triangle

Ne
1 =

1

2A
(x2y3 − x3y2 + (y2 − y3)x+ (x3 − x2)y) (3a)

Ne
2 =

1

2A
(x3y1 − x1y3 + (y3 − y1)x+ (x1 − x3)y) (3b)

Ne
3 =

1

2A
(x1y2 − x2y1 + (y1 − y2)x+ (x2 − x1)y) (3c)

Parent element:

N
e

1 = 1− ξ − η (4a)

N
e

2 = ξ (4b)

N
e

3 = η (4c)
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1.4 2D, Quadratic triangle

Parent element:

N
e

1 = (1− ξ − η)(1− 2ξ − 2η) (5a)

N
e

2 = ξ(2ξ − 1) (5b)

N
e

3 = η(2η − 1) (5c)

N
e

4 = 4ξ(1− ξ − η) (5d)

N
e

5 = 4ξη (5e)

N
e

6 = 4η(1− ξ − η) (5f)
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1.5 2D, bilinear
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(x− x2)(y − y4) (6a)

Ne
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(x− x1)(y − y3) (6b)

Ne
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(x− x4)(y − y2) (6c)

Ne
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(x− x3)(y − y1) (6d)

Parent element:

N
e

1 =
1

4
(ξ − 1) (η − 1) (7a)

N
e

2 = −1

4
(ξ + 1) (η − 1) (7b)

N
e

3 =
1

4
(ξ + 1) (η + 1) (7c)

N
e

4 = −1

4
(ξ − 1) (η + 1) (7d)

1 2

34

2a

2b

ξ
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2 Gauss points

n ξi Wi

1 0.0000000000000000 2.0000000000000000

2 ±0.5773502691896257 1.0000000000000000

3
0.0000000000000000 0.8888888888888889

±0.7745966692414834 0.5555555555555556

4
±0.3399810435848563 0.6521451548625460

±0.8611363115940525 0.3478548451374544

Table 1: Position of Gauss points ξi and corresponding weight Wi for n Gauss points.
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3 Green-Gauss theorem

w = vector field, ϕ = scalar field, n = normal to L.∫
A

ϕ∇Tw dA+

∫
A

(∇ϕ)Tw dA =

∫
L
nT(ϕw) dL (8)

2



4 Gauss divergence theorem

w = vector field, φ = scalar field, n = normal to L, div(w) = ∇Tw.∫
A

∇T(φw) dA =

∫
L

(φw)
T
n dL

5 Isoparametric mapping

Parent domain Global domain

η

ξ

-1,-1 1,-1

1,1-1,1

xe1, y
e
1

xe2, y
e
2

xe3, y
e
3

xe4, y
e
4

xe =


xe1
xe2
xe3
xe4

 ,ye =


ye1
ye2
ye3
ye4


x = x(ξ, η) = N

e
(ξ, η)xe (9)

y = y(ξ, η) = N
e
(ξ, η)ye (10)

[
dx
dy

]
= J

[
dξ
dη

]
, J =


∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

 (11)


∂N

e

∂x

∂N
e

∂y

 =
(
JT
)−1


∂N

e

∂ξ

∂N
e

∂η

 (12)

6 Matrix inversion

The inverse of the matrix M =

[
M11 M12

M21 M22

]
is given by:

M−1 =
1

det(M)

[
M22 −M12

−M21 M11

]
, with det(M) = M11M22 −M12M21. (13)

7 Stresses and strains

Hooke’s generalised law: σ = Dε

2D Strain-displ. relation: ε =

 εxx
εyy
γxy

 =



∂ux
∂x
∂uy
∂y

∂ux
∂y

+
∂uy
∂x

 = ∇̃u, u =

[
ux
uy

]
, ∇̃ =



∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x


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fagmar
Text Box
Grading instructions:
One significant mistake in derivations ==> -0.5p
Two or more significant mistake in derivations ==> -0.5p
Unclear statement of boundary conditions ==> -0.5p
Missing initial condition ==> -0.5p
Of course, points can not go below 0
 





fagmar
Text Box
Correction instructions:
- Missing specification of N and/or B ==> -0.25p
- Major mistakes ==> 0p
- don't take away additional points if again initial conditions are missing
- Clear definition of K, Kc, C and f is needed for full point
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Text Box
Bad, wrong or no no motivation ==> 0p even if they answer 3 elements
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need to be clear for full point
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Text Box
Minor error ok without point deduction but most should be correct for 0.5p. Otherwise 0p



fagmar
Text Box
Error in symmetry (half domain must be considered) ==> -0.5p



fagmar
Text Box
One significant mistake in derivations ==> -0.5p
Two or more significant mistakes in derivations ==> 0p
Missing clarity in how natural (Neumann) BCs enter the weak form ==> -0.5p
 



fagmar
Text Box
Be careful in the way nodes are ordered and xe and ye are defined. Obvious lack of understanding ==> -0.5p
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If this is wrong, consider it as -0.25p (but in the end we only give points rounded to the next half point (2.25 => 2.5p)
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Text Box
mistake in determinant calculation (if everything is correct) can still give full point (unless the error is major)



fagmar
Text Box
Somewhere, the derivatives need to be defined
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Text Box
if Be for elasticity problem is used, automatically at least -0.5p
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No need to actually invert the Jacobian or multiply matrices together. As a result, errors in this should not be considered
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Text Box
Needs to be defined, if not ==> -0.5p
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Text Box
One significant mistake in derivation ==> -0.5p
Two significant mistakes in derivation ==> 0p
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fagmar
Text Box
0.5p for the correct integration

fagmar
Text Box
0.5p for the correct definition of the 6x1 vector
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