
VSM167 Finite element method - basics

Re-exam 2018-04-06, 14:00-18:00

Instructor: Magnus Ekh (phone 070-828 2358). The instructor will visit the exam around
15:00 and 16:30.

Solution: Example solutions will be posted within a few days after the exam on the
course homepage.

Grading: The grades will be reported to the registration office on Wednesday 25 April
2018 the latest.

Review: It will be possible to review the grading at the Division of Material and Com-
putational Mechanics (floor 3 in M-building) on Friday 27 April 12:00-13:00
and Friday 4 May 12:00-13:00.

Permissible aids: No aids. Note: A formula sheet is appended to this exam thesis.





Problem 1

Consider the 1 dimensional bar supported on its left end with a spring with stiffness
k [N/m], subjected to a force F on its right end, see Figure 1 (top) below.

The weak form of the governing equation to this problem reads:∫ L

0

dv

dx
AE

du

dx
dx =

[
vAE

du

dx

]L
0

where the strain is given by ε = du
dx

and the stress by σ = Eε.

Furthermore, the mesh for the FE stress analysis is also shown in Figure 1 (bot-
tom). The three elements and four nodes (the nodes have the same numbering as
the degrees of freedom) are numbered as shown in the figure.

The resulting discretised system of FE equations will be

Ka = f

where K is the global stiffness matrix for the problem, a is a vector containing the
displacement degrees of freedom and f is the load vector.

The element stiffness matrices for the three elements (linear basis functions) are
given as follows:

Ke
1 =

[
a −a
−a a

]
, Ke

2 =

[
b −b
−b b

]
, Ke

3 =

[
c −c
−c c

]

Fk

x

3L

x243 1

L
12 3

W0 v x243 1

L
12 3

W0 v

x
243 1

3L
12 3

L0 2L

Figure 1: The one dimensional bar considered in Problem 1 (top) and the corre-
sponding 1D mesh with three elements and four nodes (bottom). (Problem 1)

(a) Assemble the global stiffness matrix K without influence from the boundary
conditions. (1p)

Continued on the next page!



(b) The global FE approximation u(x) = N (x)a is assumed where N contains the
global shape functions. If the solution of a particular problem was computed as

a =


0.7
1.5
0.2
1.2

 ,
then determine N (x) and u(x) at x = 4L/3. (1p)

(c) Explain how the spring support enters into the discretised FE equations and
how it affects K and f . (1p)



Problem 2

A wooden board is lying on a wet surface as shown in Figure 2. The free sides of
the board is subjected to convective heat transfer with a constant ambient temper-
ature Tair, whereas the bottom side of the board has the same temperature as the
wet surface Tground (constant in time). The board has absorbed moisture from the
bottom, which affects the heat capacity cp and the thermal conductivity k, making
them function of space according to the specification below.

B1

B2

B3

B4

wooden board
Tair

Ground
Tground

x

y

Figure 2: Transient heat flow problem. (Problem 2)

We here consider the transient heat flow for a cross section of unit thickness (due
to the length of the board, the flux out of plane can be neglected), whereby the
temperature T (x, y, τ) is given as

−div(q) = ρcp(x, y)
∂T

∂τ
in A for 0 < τ < τend,

T (x, y, τ) = Tground on B1,

qn = α(T (x, y, τ)− Tair) on B2, B3, B4,

T (x, y, 0) = Tground.

The specific heat capacity and thermal conductivity are functions of space as

cp(x, y) = c0
(
1 + e−c1y

)
, k(x, y) = k0

(
1 + e−k1y

)
. (1)

Furthermore, ρ, α, k0, k1, c0, c1 are known positive constants. The wood material
is assumed to be isotropic (w.r.t heat flow) and obey Fourier’s law, q = −k(x, y)∇T .

(a) Utilise that the problem is symmetric and derive the weak form for the smallest
possible subdomain of the problem at hand. You may assume a unit thickness to
simplify the derivations. (1.0p)

(b) Starting from the weak form, derive the semi-discrete form of the problem by
introducing the approximation in space on the form T (x, y, τ) ≈ N (x, y)a(τ), i.e.,
derive the expressions for the matrices C and K and the vector f in the expression.

Cȧ+ (K +Kc)a = f , for 0 < t < tend. (1p)

(Continued on next page)



(c) An engineer fails to identify the possibility to simplify the problem with respect
to symmetry and chooses to solve for the whole domain. Some results from his simu-
lation (∆τ = 50 s, Θ = 0.5, τend = 50 min) are shown in Figure 3 for Tground = 0 ◦C,
Tair = 20 ◦C, with constants as: ρ = 450 kg/m3, α = 7.67 W/(m2 ◦C), k0 = 0.1
W/(m ◦C), k1 = 10 1/m, c0 = 1, 400 J/(kg ◦C), c1 = 10 1/m. Are the results rea-
sonable? Motivate your answer! (1p)
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Figure 3: Transient heat flow solution. Temperature scales in ◦C. Please note that
t = τ is the time in the pictures. (Problem 2)



Problem 3

Consider a thin metal specimen as sketched in Figure 4a loaded in tension by a
linearly varying traction (left-to-right: from t0 to t1 and then back to t0 ) acting in
the y−direction along the upper boundary at the same time as the lower boundary
is clamped (prescribed displacements ux = uy = 0).
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a/5

a) b)

Figure 4: a) A thin specimen loaded in tension with prescribed traction along the
top edge and a clamped lower boundary. b) A close up of element no 1 (marked
in grey in part a) with dimensions, node numbering and applied traction indicated.
The point where the Jacobian matrix associated with the isoparametric mapping is
to be evaluated is to marked with a red cross. (Problem 3)

The governing 2D elasticity equation on weak form for this problem is generally
given by:∫

A

(
∇̃v
)T
D∇̃u t dA =

∫
A

vTb t dA+

∫
Lg
vTt t dL+

∫
Lh
vTh t dL

where A denotes the area of the specimen, t its thickness, Lg the part of the boundary
with prescribed degrees of freedom (g), Lh the part of the boundary with prescribed
tractions (h) and whereD is the constitutive matrix relating stresses (σ) and strains
(ε = ∇̃u) on Voigt form such that

σ = Dε.

Tasks on the next page.



(a) Create your own sketch of the problem and indicate, specifically for
the current problem, the different types of boundaries and boundary condi-
tions. Then, derive the FE-form of the problem using Galerkin’s method.
Specify the contents (in general terms) of any matrices or vectors you introduce.
No explicit expressions for shape functions or their derivatives are necessary in this
part. (1.0p)

b) The specimen is meshed with isoparametric quadrilateral elements as indicated
in part a) of the figure. Consider specifically element no 1, indicated in grey and also
enlarged in part b) of the figure. For the isoparametric mapping of element
no 1, calculate the Jacobian matrix J in the midpoint of the right edge
between nodes 1 and 2 (corresponding to isoparametric coordinates ξ = 1 and
η = 0 and marked with a red cross in Figure 4b). (1.0p)

Here, it can be shown that the Jacobian matrix is dependent only on the relative
difference of the initial nodal positions which means that for this subtask you can
place the origin from which you define the nodal coordinates anywhere you want.

(c) Calculate the element load vector contribution from the applied trac-
tion on element 1 and explain how this enters into the global load vector.
You may have to suggest a numbering scheme for the dgrees-of-freedom to solve this
task fully. (1.0p)



1 Shape functions

1.1 1D, linear

Ne
1 = − 1

L
(x− x2) (1a)

Ne
2 =

1

L
(x− x1) (1b)

1 2

1.2 1D, quadratic

Ne
1 =

2

L2
(x− x2)(x− x3) (2a)

Ne
2 = − 4

L2
(x− x1)(x− x3) (2b)

Ne
3 =

2

L2
(x− x1)(x− x2) (2c)

1 2 3

1.3 2D, linear triangle

Ne
1 =

1

2A
(x2y3 − x3y2 + (y2 − y3)x+ (x3 − x2)y) (3a)

Ne
2 =

1

2A
(x3y1 − x1y3 + (y3 − y1)x+ (x1 − x3)y) (3b)

Ne
3 =

1

2A
(x1y2 − x2y1 + (y1 − y2)x+ (x2 − x1)y) (3c)

Parent element:

N
e

1 = 1− ξ − η (4a)

N
e

2 = ξ (4b)

N
e

3 = η (4c)

1
2

3

ξ

η

1

3

2

1.4 2D, Quadratic triangle

Parent element:

N
e

1 = (1− ξ − η)(1− 2ξ − 2η) (5a)

N
e

2 = ξ(2ξ − 1) (5b)

N
e

3 = η(2η − 1) (5c)

N
e

4 = 4ξ(1− ξ − η) (5d)

N
e

5 = 4ξη (5e)

N
e

6 = 4η(1− ξ − η) (5f)

1
2

3

4

56

ξ

η

1

3

24

5
6

1



1.5 2D, bilinear

Ne
1 =

1

4ab
(x− x2)(y − y4) (6a)

Ne
2 = − 1

4ab
(x− x1)(y − y3) (6b)

Ne
3 =

1

4ab
(x− x4)(y − y2) (6c)

Ne
4 = − 1

4ab
(x− x3)(y − y1) (6d)

Parent element:

N
e

1 =
1

4
(ξ − 1) (η − 1) (7a)

N
e

2 = −1

4
(ξ + 1) (η − 1) (7b)

N
e

3 =
1

4
(ξ + 1) (η + 1) (7c)

N
e

4 = −1

4
(ξ − 1) (η + 1) (7d)

1 2

34

2a

2b

ξ

η

1 2

34

2 Gauss points

n ξi Wi

1 0.0000000000000000 2.0000000000000000

2 ±0.5773502691896257 1.0000000000000000

3
0.0000000000000000 0.8888888888888889

±0.7745966692414834 0.5555555555555556

4
±0.3399810435848563 0.6521451548625460

±0.8611363115940525 0.3478548451374544

Table 1: Position of Gauss points ξi and corresponding weight Wi for n Gauss points.
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1
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2
3 ,

1
3
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1
6(

1
6 ,

2
3

)
1
6

3 Green-Gauss theorem

w = vector field, ϕ = scalar field, n = normal to L.∫
A

ϕ∇Tw dA+

∫
A

(∇ϕ)Tw dA =

∫
L
nT(ϕw) dL (8)

2



4 Gauss divergence theorem

w = vector field, φ = scalar field, n = normal to L, div(w) = ∇Tw.∫
A

∇T(φw) dA =

∫
L

(φw)
T
n dL

5 Isoparametric mapping

Parent domain Global domain

η

ξ

-1,-1 1,-1

1,1-1,1

xe1, y
e
1

xe2, y
e
2

xe3, y
e
3

xe4, y
e
4

xe =


xe1
xe2
xe3
xe4

 ,ye =


ye1
ye2
ye3
ye4


x = x(ξ, η) = N

e
(ξ, η)xe (9)

y = y(ξ, η) = N
e
(ξ, η)ye (10)

[
dx
dy

]
= J

[
dξ
dη

]
, J =


∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

 (11)


∂N

e

∂x

∂N
e

∂y

 =
(
JT
)−1


∂N

e

∂ξ

∂N
e

∂η

 (12)

6 Matrix inversion

The inverse of the matrix M =

[
M11 M12

M21 M22

]
is given by:

M−1 =
1

det(M)

[
M22 −M12

−M21 M11

]
, with det(M) = M11M22 −M12M21. (13)

7 Stresses and strains

Hooke’s generalised law: σ = Dε

2D Strain-displ. relation: ε =

 εxx
εyy
γxy

 =



∂ux
∂x
∂uy
∂y

∂ux
∂y

+
∂uy
∂x

 = ∇̃u, u =

[
ux
uy

]
, ∇̃ =



∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x



3
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