Tentamen MVE255.	Mathematical	sciences,	Chalmers	University	/ of	Technolog	y
------------------	--------------	-----------	----------	------------	------	-----------	---

Datum:	August 19th 2021, 14.00
Allowed aids:	Any.
Grade limits:	20 points for the grade 3.
	30 points for the grade 4
	40 points for the grade 5.

There are in total 50 points to collect.

Calculations and arguments should be presented in full. **Only providing an answer will normally not be rewarded with points.** Solutions may be written in Swedish or English.

If you use any external tool or resource, you should reference it. See https://chalmers.instructure.com/courses/10111/pages/reference-rules the Canvas Page for more information. Not referencing properly may result in point deduction.

The exam consists of **eight (8)** problems. They are distributed over **three (3)** sheets.

Good luck!

Problem 1

Let $g: \mathbb{R}^3 \to \mathbb{R}^3$ be defined through

$$g(x,y,z) = \begin{bmatrix} yx\\ xz\\ zy \end{bmatrix}.$$

(6P)

(6P)

- (1) Find the derivative of g. (4p)
- (2) Evaluate g and g' in $\langle 1, 1, 1 \rangle$. (2p)

Problem 2

Calculate $\iint_A y \, dx dy$, where A is the part of the square $[0,1]^2$ that lies above the curve $y = x^2$.

Problem 3

Let D be the part of the cone $K = \{\langle x, y, z \rangle, | x^2 + y^2 \le z^2\}$ which lies inside the cylinder $Z = \{\langle x, y \rangle, | x^2 + y^2 = 1, 0 \le z \le 4\}$. Determine the center of mass of D.

Tip: You may use the symmetries of the set to your advantage.

Problem 4

Let the function f be given through

$$f(x,y) = x^{2} - xy + y^{2} - 2x + y + 1.$$

- (1) Find and classify all critical points of the function on \mathbb{R}^2 . (4p)
- (2) The function has a maximum on the set (this does not need to be shown) $G=\{\langle x,y\rangle\,|\,x^4+y^4\leq 1\}.$
 - Is this maximum attained in the point $\langle -1/\sqrt[4]{2}, 1/\sqrt[4]{2} \rangle$? (3p)

Problem 5

Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be a function with

$$f'(x,y) = \begin{bmatrix} ye^{-x} & -e^{-x} \\ 2xe^{-y} & -x^2e^{-y} \end{bmatrix}$$

and $g: \mathbb{R}^3 \to \mathbb{R}^2$ the function

$$g(s,t,u) = \begin{bmatrix} st\\ut \end{bmatrix}$$

Determine the value of $(f \circ g)'(0, 0, 1)$.

Problem 6

Let $\mathbf{v}: \mathbb{R}^3 \to \mathbb{R}^3$ be defined through

where γ is the curve

$$\mathbf{v}(x,y,z) = \begin{bmatrix} y e^{xz} (1+xz) \\ x e^{xz} \\ x^2 y e^{xz} \end{bmatrix}$$

(1) Show that \mathbf{v} is conservative, and determine a potential for \mathbf{v} (3p)

(2) Calculate the value of the line integral

$$\int_{\gamma} \mathbf{v} \cdot \mathrm{d}\mathbf{r},$$

(3p)

$$\gamma(t) = < t\cos(t), t\sin(t), t >, t \in [0, 2\pi].$$

 $\mathbf{2}$

(6P)

(7P)

(7P)

Problem 7

Let γ be the closed and non-self-intersecting curve given by the parametrization

$$\gamma(t) = \begin{bmatrix} (t+1)\sin(t) \\ -\cos(t) \\ \cos(t) - (t+1)\sin(t) + 1 \end{bmatrix}, t \in [0, 2\pi]$$

and ${\bf v}$ the vector field

$$\mathbf{v}(x, y, z) = (x + y + z) \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- (1) Show that all points in γ lie in the plane x + y + z = 1, and thus that γ is the boundary curve of a region in the same plane. (1p)
- (2) Calculate the curl of **v**. What is the dot product between curl **v** and the normal of the plane x + y + z = 1? (2p)
- (3) Show that the line integral of \mathbf{v} along γ is zero. (3p)

Problem 8

Let $\mathbf{w}: \mathbb{R}^3 \to \mathbb{R}^3$ be the vector field defined through

$$\mathbf{w}(x,y,z) = \begin{bmatrix} xy^2\\yz^2\\zx^2 \end{bmatrix}.$$

Let furthermore $K \subseteq \mathbb{R}^3$ be a solid which is a subset of the unit ball, i.e. $|\mathbf{p}| < 1$ for all $\mathbf{p} \in K$ and has non-empty interior. Show that

$$0 < \int_{\partial K} \mathbf{w} \cdot \, \mathrm{d}\mathbf{S} \le \frac{4\pi}{5},$$

where the surface element is pointing out of K.

Tip: Apply the divergence (Gauß) theorem.

(6P)

(6P)