
Exam - Quantum optics and quantum information FKA173

Date and time: Tuesday, 27 October 2020, 8:30 - 12:30 + 30min for scanning the solutions
Zoom link for proctoring: https://chalmers.zoom.us/j/66883425079 you have to be on zoom
with a webcam during the entire duration of the exam.
Examiners:

Witlef Wieczorek (witlef.wieczorek@chalmers.se)
Thilo Bauch (thilo.bauch@chalmers.se)
Giulia Ferrini (ferrini@chalmers.se)

Grading: There are 9 questions worth a total of 40 points. The points awarded for each
question is indicated by that question and in the case of subquestions the division of the points
is also indicated.
How to submit your solutions: You are expected to write down your solutions. All solutions
must be uploaded to Canvas. In case you have written the solutions on paper, you must scan or
photograph these written notes and upload them to Canvas. Please upload all your solutions
as one document to Canvas.
General rules: all aids are allowed during the online remote exam. For example, you are
allowed to access the internet and use any course material. However, this does not mean that
you may copy text or figures from those sources. You are not allowed to plagiarize, but you are
allowed to use the information you have found. Write your online exam answers yourself,
do not collaborate with another student or plagiarize! If you use information that
you found on the internet or in the course literature (that is, permitted aids) do
refer to the sources in your answer.

Exam questions:

1. Bloch sphere manipulations (3 pts.)

(a) (1 pt.) Write down a general qubit state using the angles θ and φ and depict it on the
Bloch sphere.

(b) (2 pt.) Given two pulsed d.c. fields By(t) and Bz(t) that couple to a qubit, i.e. the
Hamiltonian is given by

Ĥ = −~γ
2

(By(t)σ̂y +Bz(t)σ̂z) , (1)

with γ > 0, describe how to take the qubit from the state |1〉 to the state (|0〉+ i |1〉) /
√

2.
During how long time should the fields be applied?
Draw the two states |1〉, (|0〉+ i |1〉) /

√
2, the two magnetic fields, and the trajectories

between the two states during operation on the Bloch sphere.
Note: You can use the ”left hand rule”. Keep in mind that you can change the fields
along y and z direction independently.

2. Quantizing electrical circuits (7 pts.)

Figure 1: Circuit diagram of the RF SQUID
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Derive the quantum mechanical Hamiltonian of the RF SQUID (see Fig. 1). In an RF
SQUID the two sides of a superconducting tunnel junction with capacitance CJ are connected
by a superconducting loop with inductance L. An external constant flux Φext is imposed
through the loop by an auxiliary coil. Here the tunnel junction is a parallel combination
of a capacitance CJ and a Josephson junction with flux dependent potential energy EJJ =

−EJ cos
(

2π Φ
Φ0

)
, where EJ is a constant and Φ the flux across the junction and Φ0 = h/(2e)

the superconducting flux quantum.

(a) (3 pts.) Write down the classical Lagrangian L(Φ, Φ̇) for the circuit. Use the flux
through the inductance L as the independent variable.

(b) (1 pt.) Find the conjugate momentum to the flux coordinate. What is the physical
meaning of the conjugate momentum?

(c) (2 pt.) From the Lagrangian derive the classical Hamiltonian of the circuit using the
Legendre transformation.

(d) (1 pt.) Promoting the flux coordinate and its conjugate momentum to quantum me-
chanical operators one obtains the quantum mechanical Hamiltonian. Write down the
commutation relation between the operators in the Hamiltonian.

3. Phase space description of states of the light field (2.5 pts.)

The quadrature operators X̂1 and X̂2 can be used to characterize states of the light field.
They are defined as

X̂1 =
1

2
(â+ â†), (2)

X̂2 =
1

2i
(â− â†). (3)

(a) (1 pt.) Consider a coherent state |α〉 with α = |α|eiφ. Draw the state |α〉 in phase
space (i.e. 〈X̂2〉 vs. 〈X̂1〉) and label all parameters of the coherent state in the diagram
including its uncertainties for X̂1 and X̂2. Draw this coherent state also after time t1,
i.e., φ→ φ+ ωt1.

(b) (1 pt.) Draw qualitatively in real space a coherent state and an amplitude squeezed
state. Real space is spanned by 〈Ê(t)〉 vs. time with 〈Ê(t)〉 the expectation value of
the electric field operator. Indicate the uncertainty of the respective state as a shaded
region around the mean value of Ê(t).

(c) (0.5 pts.) Name one possible application, where a squeezed state is superior to a coherent
state. Explain, why the application you have chosen profits from using a squeezed state
compared to using a coherent state.

4. Measurement of non-classical light (2 pts.)

(a) (2 pts.) Assume that you have two types of light sources. The first one emits photon
packets that contain three photons at a time and the second one emits a coherent state.
Explicitly derive the measurement result when you measure the normalized g(1) and
g(2)-functions of these two light sources.

Remember that

g(1)(x1, x2) =
G(1)(x1, x2)√

G(1)(x1, x1) ·G(1)(x2, x2)
, (4)

g(2)(x1, x2) =
G(2)(x1, x2)

G(1)(x1, x1) ·G(1)(x2, x2)
(5)
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with the corresponding correlation functions given as

G(1)(x1, x2) = 〈i|Ê(−)(x1)Ê(+)(x2)|i〉 (6)

G(2)(x1, x2) = 〈i|Ê(−)(x1)Ê(−)(x2)Ê(+)(x2)Ê(+)(x1)|i〉 (7)

and the electric fields Ê(+)(x) = E0âe
i(kx−ωt), Ê(−)(x) = E0â

†e−i(kx−ωt) and the initial
state of the field |i〉.

5. Rabi Hamiltonian (3.5 pts.)

The Rabi Hamiltonian describes the interaction between light and a two-level system semi-
classically and is given as

ĤRabi = −~ω0

2
σ̂z + ~Ω1 cos (ωt+ φ)σ̂x, (8)

with the Pauli matrices σ̂z =

(
1 0
0 −1

)
and σ̂x =

(
0 1
1 0

)
.

(a) (1 pt.) Name one approximation that has been made when deriving the Rabi Hamil-
tonian. Explain its validity and explain under which circumstances this approximation
breaks down.

(b) (2.5 pts.) The general solution of the Rabi problem can be written as

|ψ(t)〉 = cg(t)e
−iEgt

~ |g〉+ ce(t)e
−iEet

~ |e〉 (9)

with

ce(t) = c+(t0)eiλ+t + c−(t0)eiλ−t (10)

cg(t) = − 2

iΩ1
eiφe−i∆t

[
iλ+c+(t0)eiλ+t + iλ−c−(t0)eiλ−t

]
(11)

and

λ± = 1
2

∆±
√

∆2 + Ω2
1︸ ︷︷ ︸

=:Ω


= 1

2 (∆± Ω) (12)

Assume that the atom is at time t0 in the ground state, that the detuning is ∆ = 0 and
the light phase is φ = 0.

i. Explicitly calculate the atomic inversion w(t) = Pe(t) − Pg(t) at any given time,
with Pi(t) = |〈i|ψ(t)〉|2 and i ∈ {g, e}.

ii. At which times t is (i) the atom in the excited state, (ii) the atom in the ground
state and (iii) when is w(t) = 0 (explicitly write down the times in multiples of
π/Ω1)? How would one call each of these pulses?

6. Jaynes-Cummings Hamiltonian (5 pts.)

The Jaynes-Cummings Hamiltonian can be derived from the Rabi Hamiltonian by replacing
the classical field E(t) of a single mode in a one dimensional cavity by the electric field
operator Ê(t) = Êx(z, t) = E0(â+ â†) sin (kz) resulting in

ĤJC = −~ω0

2
σz + ~ωâ†â+ ~g(âσ̂+ + â†σ̂−), (13)
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with the atomic raising and lowering operators σ̂+ =

(
0 0
1 0

)
and σ̂− =

(
0 1
0 0

)
, respectively,

the Pauli operators σ̂z =

(
1 0
0 −1

)
and σ̂x =

(
0 1
1 0

)
and the atom-field coupling g.

(a) (1 pt.) Explicitly derive the Hamiltonian Ĥ(n−1)
JC in the subspace of the states |g〉|n〉 and

|e〉|n− 1〉 with n > 0.

(b) (0.5 pts.) The time evolution operator of Hamiltonian Ĥ(n)
JC in the subspace of |g〉|n+1〉 =(

1
0

)
and |e〉|n〉 =

(
0
1

)
is given by

Û(t) =

(
cos
(

Ωn
2 t
)

+ i · nz sin
(

Ωn
2 t
)

i · nx sin
(

Ωn
2 t
)

i · nx sin
(

Ωn
2 t
)

cos
(

Ωn
2 t
)
− i · nz sin

(
Ωn
2 t
) ) , (14)

with Ωn =
√

∆2 + 4g2(n+ 1), nz = ∆/Ωn and nx = −2g
√
n+1

Ωn
and the detuning ∆ =

ω0 − ω.

Let us assume that the initial state of the system is |ψ(0)〉 = |e〉|0〉. What is the state
after some time t?

(c) (2 pt.) What is the probability to find the state |ψ(t)〉 in the excited state |e〉|0〉? Draw
the excited state probability versus time for t ∈ {0, πg } in case the detuning is ∆ = 0.
Describe qualitatively what is happening in the first time interval {0, π2g} and in the
second time interval { π2g ,

π
g }.

(d) (1.5 pts.) The eigenergies E±(n) of Ĥ(n)
JC in the basis |g〉|n+ 1〉 and |e〉|n〉 are

E±(n) = ~ω
(
n+

1

2

)
± ~

2

√
∆2 + 4g2(n+ 1). (15)

Draw a figure where you show the energies E+(0) and E−(0) qualitatively in dependence
of the detuning ∆ = ω0 − ω (assume that only the atomic frequency ω0 changes and
that the frequency of the light field ω remains constant) for the coupled case (g 6= 0)
and for the uncoupled case (g = 0). What is the major difference between the coupled
light-atom system and the uncoupled light-atom system?

7. Density matrix (2.5 pts.)

The density matrix ρ incorporates mixed states into the formalism of quantum mechanics
and allows, amongst others, to distinguish a pure from a mixed state. Consider the situation
that Alice (A) and Bob (B) share a quantum state ρAB.

(a) (0.5 pts.) Assume that Alice and Bob share the state

ρAB =
1

2
(|00〉〈00|+ |11〉〈11|). (16)

Do they share a pure or a mixed state? Why?

(b) (1 pt.) Now assume that Alice cannot talk to Bob anymore. What is the state of Alice,
if she does not know about Bob’s part of the state? Has Alice then a pure or a mixed
state?

(c) (1 pt.) In case of a qubit, the density matrix can be visualized as a Bloch vector on the
Bloch sphere with components ~r = (rx, ry, rz)

T with ri = 〈σ̂i〉. Which of the following
states are pure or mixed and depict them on the Bloch sphere:

(i) ~r1 =
(

1
2 , 0,

1
2

)T
.
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(ii) ~r2 =
(√

2√
3
, 1√

3
, 0
)T

.

8. Bloch equations (4.5 pts.)

The Bloch equations describe the dynamics of a qubit under the presence of decoherence and
can be written as

d~r

dt
= ~r × ~ω(t)− rz − r0

z

T1
ẑ − rxx̂+ ryŷ

T2
, (17)

with the Hamiltonian of the qubit given as

H = −~
2
~ω(t)~σ, (18)

with ~σ = (σ̂x, σ̂y, σ̂z)
T , ~ω(t) = (ωx(t), ωy(t), ωz(t))

T and x̂, ŷ, ẑ the unit vectors along the
x, y, z direction of the Bloch sphere and ri = 〈σ̂i〉 with i ∈ {x, y, z}. Assume that the qubit
is quantized along the z direction.

(a) (1 pt.) What is the meaning of the time constants T1 and T2 in the Bloch equations?
Which noise processes are relevant for the T1 time and which for the T2 time?

(b) (1.5 pts.) Assume that the qubit’s Hamiltonian is given as H = −~
2ωzσ̂z and that the

qubit is initially (time t = 0) in its ground state |g〉. Further assume that the qubit’s
equilibrium population along the z direction is given as r0

z = 1 (i.e. the ground state |g〉)
and that both time scales T1 and T2 are infinite.

Write down the Bloch equations for this special case and calculate the time-dependent
atomic inversion, i.e., w(t) = Pe(t)− Pg(t) with Pe(t) = 1

2(1− rz(t)).
(c) (2 pts.) Now assume that T1 and T2 are finite and that the qubit is initially (time

t = 0) in its excited state |e〉 (with the qubit Hamiltonian H = −~
2ωzσ̂z and r0

z = 1).
Write down the Bloch equations for this special case and calculate the time-dependent
atomic inversion w(t). You can use that the solution of f ′(x) = −f(x)/a + 1/a is
f(x) = 1 + e−x/a(f(0)− 1). At which time is the atomic inversion equal to zero?

9. Quantum algorithms (10 points)

Consider the circuit represented in Fig. 2, where the unknown state |ψs〉 = α|0〉 + β|1〉 is
entangled with a multiqubit state |C〉. The state |C〉 is a 5-qubit state, that we will call the
code state. The CZ gate in the circuit represents a simultaneous CZ operation acting on all
qubits composing the code state. Let us introduce the following notation for two different
logical states of the code:

|0L〉 ≡ |C〉 (19)

|1L〉 ≡ Ẑ|C〉, (20)

where Ẑ ≡ Ẑ1Ẑ2Ẑ3Ẑ4Ẑ5.

|ψs〉 • X̂

|C〉 / • |Ψ〉

Figure 2: Circuit realising the encoding of an unknown state onto several physical qubits. The
state |C〉 is a multiqubit state, here a 5 qubit state, as indicated by the multiqubit (crossed)
quantum wire.
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(a) (2 pts.) Compute the combined state |Ψ〉tot of single qubit and code state before the
measurement.

(b) (2 pts.) Express this state |Ψ〉tot using the eigenbasis of the Pauli matrix X̂, i.e., the
states |+〉 = (|0〉 + |1〉)/

√
2 and |−〉 = (|0〉 − |1〉)/

√
2, to express the state of the first

qubit, and the logical states in Eq. (19) for the code state.

(c) (2 pts.) The observable X̂ is then measured on the first qubit. Compute the state of
the multiqubit system after the measurement, depending on whether a measurement
outcome 0 or 1 is obtained when the measurement is performed, and express it in terms
of the two multiqubit states |0L〉 and |1L〉 .

Suppose that the outcome 1 is obtained. The unknown state has then been encoded success-
fully onto the code state. We now design a subset of 3 qubits among the qubits composing
the code, namely we will consider the 3 first qubits, labeled by 1,2,3. We want to show
that if these 3 qubits are individually measured in a suitable way, we can obtain the same
information as if the unknown state |ψs〉 had been measured. In other words, we want to find
logical operators X̂1,2,3

L and Ẑ1,2,3
L that act on the code state as regular Pauli operators, i.e.

X̂1,2,3
L |0L〉 = |1L〉; X̂1,2,3

L |1L〉 = |0L〉
Ẑ1,2,3
L |0L〉 = |0L〉; Z1,2,3

L |1L〉 = (−1)|1L〉. (21)

(d) (2 pts.) Using the definitions that we gave above, show that the following operator
accomplishes the desired operations in the first line of Eq.(21):

X̂1,2,3
L = (Ẑ1X̂1)(Ẑ2)(Ẑ3X̂3). (22)

Hint: assume and use that, for this special multiqubit state, |0L〉 = K̂1K̂3|0L〉 with
K̂1 = X̂1Ẑ5Ẑ2 and K̂3 = X̂3Ẑ4Ẑ2, as well as the properties of Pauli matrices such as
Ẑ2
i = X̂2

i = 1, X̂iẐj = (−1)δi,j ẐjX̂i. For completeness, we also report that Ẑ1,2,3
L =

X̂2Ẑ1Ẑ3 (we won’t be interested in this demonstration here, because it requires to know
the structure of the multiqubit state |C〉).

(e) (2 pts.) In the above questions we have seen an example of a protocol where information
from a subset of k qubits (3 in our case) out of an n−qubit code state (composed of
5 qubits in our case) allows for reconstructing the unknown state. In general, this
reconstruction is possible when n < 2k, where k is the number of qubits in the subset,
and n is the total number of qubits in the code state. Can you explain by using theorems
that you know why it must be impossible to have a n = 2k protocol instead?
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