
Quantum Optics and Quantum Informatics FKA173

Date and time: Tuesday, 29 October 2019, 8:30 - 12:30
Examiners: Giulia Ferrini (0709492347), Witlef Wieczorek (0733-873214), and Thilo Bauch (0733-66 13 79).
Visits around 09:30 and 11:30
Grading: There are 8 questions worth a total of 40 points. The points awarded for each question is indicated
by that question and in the case of subquestions the division of the points is also indicated.

1. Bloch sphere manipulations (3 pts.)

(a) (1 pt.) Write down a general qubit state using the angles θ and φ and depict it on the Bloch sphere.

(b) (2 pt.) Given two pulsed d.c. fields By(t) and Bz(t) that couple to a qubit, i.e. the Hamiltonian is
given by

Ĥ = −~γ
2

(By(t)σ̂y +Bz(t)σ̂z) ,

with γ > 0, describe how to take the qubit from the state |0〉 to the state (|0〉 − i |1〉) /
√

2. During
how long time should the fields be applied?
Note: You can use the ”left hand rule” together with the time-dependent rotation angle δ =
γ
∫ t

0
dt′|B|(t′) around the field axis. Keep in mind that you can change the fields along y and z

direction independently.

2. Quantizing electrical circuits (7 pts.)

Figure 1: Circuit diagram of the current biased Josephson junction

Derive the quantum mechanical Hamiltonian of the current biased Josephson junction (see Fig. 1). The

potential energy of the Josephson junction, represented by J , is given by EJJ = −EJ cos
(

2π Φ
Φ0

)
, where

EJ is a constant and Φ the flux across the junction and Φ0 = h/(2e) the superconducting flux quantum.
The capacitance of the junction is given by CJ . Ib represents the external constant current source. The
bias current source can be considered as an inductor L, which is threaded by an external flux Φ̃, and
taking L→∞ and Φ̃→∞, while keeping Φ̃/L = Ib.

(a) (3 pts.) Derive the classical Lagrangian L(Φ, Φ̇) for the circuit using the flux. Use the flux through
the Josephson junction as the independent variable.

(b) (1 pt.) Find the conjugate momentum to the flux coordinate. What is the physical meaning of the
conjugate momentum?
Note: The conjugate momentum of the flux Φ is given by q = ∂L/∂Φ̇.

(c) (2 pt.) Write down the classical Hamiltonian for the circuit.
Note: Use the Legendre transformation to obtain the Hamiltonian: H(Φn, qn) =

∑
n Φ̇nqn − L

(d) (1 pt.) Promoting the flux coordinate and its conjugate momentum to quantum mechanical operators
one obtains the quantum mechanical Hamiltonian. What are the commutation relations between the
operators in the Hamiltonian?
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3. Phase space description of states of the light field (2 pts.)

The quadrature operators X̂1 and X̂2 can be used to characterize states of the light field. They are defined
as

X̂1 =
1

2
(â+ â†), (1)

X̂2 =
1

2i
(â− â†). (2)

(a) (1 pt.) Consider a coherent state |α〉 with α = |α|eiφ. Draw the state |α〉 in phase space (i.e. 〈X̂2〉
vs. 〈X̂1〉) including its uncertainties for X̂1 and X̂2.

(b) (1 pt.) Draw qualitatively in phase space an amplitude squeezed vacuum state including its uncer-
tainties for X̂1 and X̂2.

4. Detection of non-classical light (3.5 pts.)

(a) (2 pts.) Which experiment would you use to distinguish a single photon light source from a coherent
state light source. Explain how this experiment works and why it allows you to distinguish these two
states.

(b) (1.5 pts.) Assume that you have a photon light source that emits the Fock state |2〉. Derive the
result when you measure the normalized g(2)-function of the Fock state |2〉. Remember that

g(2)(x1, x2) =
G(2)(x1, x2)

G(1)(x1, x1) ·G(1)(x2, x2)
(3)

with the corresponding correlation functions given as

G(1)(x1, x2) = 〈i| Ê(−)(x1)Ê(+)(x2) |i〉 (4)

G(2)(x1, x2) = 〈i| Ê(−)(x1)Ê(−)(x2)Ê(+)(x2)Ê(+)(x1) |i〉 (5)

and the electric fields Ê(+)(x) = E0âe
i(kx−ωt), Ê(−)(x) = E0â

†e−i(kx−ωt) and the initial state of the
field |i〉.

5. Jaynes-Cummings Hamiltonian (9 pts.)

The Jaynes-Cummings Hamiltonian can be derived from the Rabi Hamiltonian by replacing the classical
field E(t) of a single mode in a one dimensional cavity by an operator Ê(t) = Êx(z, t) = E0(â+ â†) sin (kz),
resulting in

Ĥ = −~ω0

2
σz + ~ωâ†â+ ~g(âσ+ + â†σ−).

(a) (2 pts.) Derive the Hamiltonian Ĥ(n) in the subspace of the states |g〉|n+ 1〉 and |e〉|n〉. Remember
that â |n〉 =

√
n |n− 1〉 and â† |n〉 =

√
n+ 1 |n+ 1〉.

(b) (1.5 pts.) The time evolution operator of Hamiltonian Ĥ(n) in the subspace of |g〉|n + 1〉 =

(
1
0

)
and |e〉|n〉 =

(
0
1

)
is given by

Û(t) =

(
cos
(

Ωn

2 t
)

+ i · nz sin
(

Ωn

2 t
)

i · nx sin
(

Ωn

2 t
)

i · nx sin
(

Ωn

2 t
)

cos
(

Ωn

2 t
)
− i · nz sin

(
Ωn

2 t
) ) , (6)

with Ωn = 2g
√
n+ 1, nz = ∆/Ωn and nx = −2g

√
n+1√

∆2+4g2(n+1)
and the detuning ∆ = ω0 − ω. What is

the state |ψ(t)〉 after some time t given the initial state |ψ(0)〉 = |e〉|n〉 and for zero detuning ∆ = 0?
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(c) (2.5 pts.) Consider now the case for n = 0. What is the probability to find the state |ψ(t)〉 in
the excited state |e〉|0〉? Draw the excited state probability versus time for t ∈ {0, πg }. Describe

qualitatively what is happening in the first time interval {0, π2g} and in the second time interval

{ π2g ,
π
g }.

(d) (3 pts.) The eigenergies E± of Ĥ(n) are

E± = ~ω(n+
1

2
)± ~

2

√
(ω0 − ω)2 + 4g2(n+ 1). (7)

Consider the case for zero detuning, i.e., ω = ω0. Depict the energy spectrum of the uncoupled
(g = 0) and coupled (g 6= 0) atom-photon states. To this end draw a diagram of the photon energy
ladder on top of the ground state |g〉 and excited state |e〉. Put the relevant energy differences of the
atom energy, photon energy, and the energy difference between E+ and E− for n = 0 and n = 1 into
the drawing.

6. Density matrix (2.5 pts.)

The density matrix ρ incorporates mixed states into the formalism of quantum mechanics and allows,
amongst others, to distinguish a pure from a mixed state. Consider the situation that Alice (A) and Bob
(B) share a quantum state ρAB = |ψ〉AB 〈ψ|AB .

(a) (1 pt.) Assume that Alice and Bob share the state

ρAB =
1

2
(|00〉 〈00|+ |00〉 〈11|+ |11〉 〈00|+ |11〉 〈11|). (8)

Do they share a pure or a mixed state? Why?

(b) (1.5 pts.) Now assume that Alice cannot talk to Bob anymore. What is the state of Alice, if she does
not know about Bob’s part of the state? Has Alice then a pure or a mixed state?

7. Bloch equations (3 pts.)

The Bloch equations describe the dynamics of a qubit under the presence of decoherence and can be
written as

d~r

dt
= ~r × ~ω(t)− rz − r0

z

T1
ẑ − rxx̂+ ry ŷ

T2
,

with the Hamiltonian of the qubit given as

H = −~
2
~ω(t)~σ,

with ~σ = (σx, σy, σz)
T , ~ω(t) = (ωx(t), ωy(t), ωz(t))

T and x̂, ŷ, ẑ the unit vectors along the x, y, z direction
of the Bloch sphere and ri = 〈σi〉 with i ∈ {x, y, z}.

(a) (1.5 pts.) Assume that the qubit’s Hamiltonian is given as H = −~
2ωzσz and that the qubit is initially

(time t = 0) in its excited state |e〉. Further assume that the qubit’s equilibrium population along
the z−direction is given as r0

z = 1 (i.e. the ground state |g〉) and that both time scales T1 and T2 are
infinite.

Write down the Bloch equations for this special case and calculate the time-dependent occupation of
the excited state, i.e., Pe(t) = 1

2 (1− rz(t)).
Note: Remember that the vector product between two vectors is defined as ~a×~b = (a2b3−a3b2, a3b1−
a1b3, a1b2 − a2b1)T .
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(b) (1.5 pts.) Now assume that T1 and T2 are finite. Write down the Bloch equations for this special
case and calculate the time-dependent occupation of the excited state. You can use that the solution
of f ′(x) = −f(x)/a+ 1/a is f(x) = 1 + e−x/a(f(0)− 1).

8. Optimal cloning machine (10 pts.)

(a) (2 pts.) Recall the statement and the proof of the no-cloning theorem. Does this theorem say
anything about the possibility of realizing imperfect copies of a quantum states?

(b) (2 pts.) Let’s consider a machine acting on the three qubits in the following way:

|000〉ABC → |χ0〉 =

√
2

3
|00〉AB |0〉C +

√
1

3
|β01〉AB |1〉C

|100〉ABC → |χ1〉 =

√
2

3
|11〉AB |1〉C +

√
1

3
|β01〉AB |0〉C

where |β01〉AB is the Bell state:

|β01〉AB =
1√
2

(|01〉AB + |10〉AB).

It is clear according to the notations that the qubit A is copied on the qubit B, the qubit C being
an auxiliary for calculation.

Check that the scalar products 〈000| 000〉, 〈100| 100〉 and 〈000| 100〉 are conserved in this operation.
Is this transformation physically realizable ?

(c) (2 pts.) What is the transformed state |ψt〉ABC obtained for an initial arbitraty state |Ψ〉A =
a |0〉A + b |1〉A of the qubit A ? What is the density matrix of the initial state |Ψ〉A ?

(d) (2 pts.) To implement this optimal cloning machine, we consider the following circuit on the figure
hereunder (see Fig. 2), where the usual notation for C-NOT gates is used. We will admit that the
preparation part (with 3 rotations and 2 C-NOT) prepares qubits B and C in the state:

|Ψ〉BC =
1√
6

(2 |00〉+ |01〉+ |11〉).

Show that the copying circuit realizes the desired operation.

(e) (2 pts.) The reduced transformed density matrix for qubit B is defined as

ρtB = TrAC [ρtABC ] = AC〈00|ρtABC |00〉AC+AC〈01|ρtABC |01〉AC+AC〈10|ρtABC |10〉AC+AC〈11|ρtABC |11〉AC ,

and analogously for ρtA = TrBC [ρtABC ]. Given the transformed state |ψt〉ABC computed in point 3,
compute the explicit expression of the reduced density matrix of qubit B. Show that it realizes an
approximated copy of the initial qubit A, by comparing the two density matrices.

Figure 2: Optimal cloning machine
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