
Quantum Optics and Quantum Informatics FKA173

Date and time: Tuesday, 30 October 2018, 08:30-12:30.
Examiners: Giulia Ferrini (0709492347), Witlef Wieczorek (0733-873214), and
Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.
Grading: There are 6 questions worth a total of 20 points. The points awarded
for each question is indicated by that question and in the case of subquestions
the division of the points is also indicated.

1. Bloch sphere manipulations (1.5 pts.)

(a) (0.5 pt.) Write down a general qubit state using the angles θ and φ
and depict it on the Bloch sphere.

(b) (1 pt.) Given two pulsed d.c. fields Bx(t) and Bz(t) that couple to a
qubit, i.e. the Hamiltonian is given by

Ĥ = −~γ
2

(Bx(t)σ̂x +Bz(t)σ̂z) ,

with γ > 0, describe how to take the qubit from the state |0〉 to
the state (|0〉 − |1〉) /

√
2. During how long time should the fields be

applied?
Note: You can use the ”left hand rule” together with the time-
dependent rotation angle δ = γ

∫ t
0
dt′|B|(t′) around the field axis.

Keep in mind that you can change the fields along x and z direction
independently.

2. Quantizing Electrical Circuits (3.5 pts.)

Figure 1: Circuit diagram of the RF SQUID

Derive the quantum mechanical Hamiltonian of the RF SQUID (see Fig.
1). In an RF SQUID the two sides of a superconducting tunnel junction
with capacitance CJ are connected by a superconducting loop with induc-
tance L. An external constant flux Φext is imposed through the loop by
an auxiliary coil. Here the tunnel junction is a parallel combination of a
capacitance CJ and a Josephson junction with flux dependent potential
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energy EJJ = −EJ cos
(

2π Φ
Φ0

)
, where EJ is a constant and Φ the flux

across the junction and Φ0 = h/(2e) the superconducting flux quantum.

(a) (1.5 pts.) Write down the classical Lagrangian L(Φ, Φ̇) for the circuit.
Use the flux throug the inductance L as the independent variable.

(b) (0.5 pt.) Find the conjugate momentum to the flux coordinate. What
is the physical meaning of the conjugate momentum?
Note: The conjugate momentum of the flux Φ is given by q = ∂L/∂Φ̇.

(c) (1 pt.) Write down the classical Hamiltonian for the circuit.
Note: Use the Legendre transformation to obtain the Hamiltonian:
H(Φn, qn) =

∑
n Φ̇nqn − L

(d) (0.5 pt.) Promoting the flux coordinate and its conjugate momentum
to quantum mechanical operators one obtains the quantum mechan-
ical Hamiltonian. What are the commutation relations between the
operators in the Hamiltonian?

3. Coherent states (1 pts.)

The coherent states |α(t)〉 are the eigenstates of the annihilation operator

â|α(t)〉 = α(t)|α(t)〉
with

|α(t)〉 = e−|α(t)|2/2
∞∑
n=0

α(t)n√
n!
|n〉

and α(t) = e−iωtα and α is a complex number.

(a) (0.5 pt.) Calculate the expectation value

〈Êx(z, t)〉 = 〈α(t)|Êx(z, t)|α(t)〉,
i.e., the expectation value of the quantized electric field

Êx(z, t) = E0(â+ â†) sin (kz)

for a coherent state |α(t)〉.
(b) (0.5 pt.) What type of light source creates such coherent states?

Name at least one other type of light state of the quantized radiation
field (besides the coherent state).

4. Jaynes-Cummings Hamiltonian (3.5 pts.)

(a) The Jaynes-Cummings Hamiltonian can be derived from the Rabi
Hamiltonian by replacing the classical field E(t) of a single mode in a

one dimensional cavity (resonator) by an operator Ê(t) = Êx(z, t) =
E0(â+ â†) sin (kz), resulting in

Ĥ = −~ω0

2
σz + ~ωâ†â+ ~g(âσ+ + â†σ−).
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(i) (0.5 pt.) What are the meanings of the three terms in the Hamil-
tonian?

(ii) (0.5 pt.) In the two-dimensional subspace spanned by |g〉|n+ 1〉
and |e〉|n〉, the Jaynes-Cummings Hamiltonian can be written as

Ĥn = ~ω
(
n+

1

2

)
1̂− ~(ω0 − ω)

2
σz + ~g

√
n+ 1σx,

where |e〉 and |g〉 are respectively the excited and ground state
of the atom, and |n〉 is the photon number state. Here the Pauli
operators and the unity matrix 1̂ are represented in the |g〉|n+1〉
and |e〉|n〉 basis and one can define the atom-field detuning as
∆ = ω0 − ω.
Derive the Eigenenergies E±(ω,∆, g) of the Hamiltonian as a
function of ω, ∆, g.
Note: The eigenvalues λ± of a 2× 2 matrix can be found from(

a11 − λ±
) (
a22 − λ±

)
− a12a21 = 0,

where a11, a22 are the diagonal and a12, a21 the off-diagonal ele-
ments of the 2× 2 matrix. The solution to a quadratic equation
with λ2 + pλ+ q = 0 is given as λ± = −p/2±

√
(p/2)2 − q.

(iii) (1 pt.) Having derived the eigenergies E±, consider now the case
for zero detuning, i.e., ω = ω0. Depict the energy spectrum of
the uncoupled (g = 0) and coupled (g 6= 0) atom-photon states.
Put the relevant energy differences into the drawings.

(b) For large detuning between the field frequency and the atomic tran-
sition frequency (∆ = ω0 − ω, |∆| � g) we obtain the dispersive
Hamiltonian:

Ĥdisp = −1

2

(
~ω0 +

~g2

∆

)
σz +

(
~ω − ~g2

∆
σz

)
â†â,

where σz is represented in the atom basis.

(i) (0.5 pt.) What is the effective frequency of the atom when there
are 5 photons in the cavity?

(ii) (1 pt.) The dispersive Hamiltonian can be used to read out the
atom/qubit state using coherent (microwave) photons. Explain
explicitly how such a measurement can be implemented and what
is measured, and how the qubit state can be detected.

5. Density matrix and the Bloch equations (3 pts.)

(a) (0.5 pt.) The density matrix formalism incorporates mixed states into
the formalism of quantum mechanics and allows, amongst others, to
distinguish a pure from a mixed state.

Decide, which of the following states are pure or mixed:
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(i) ρ1 = 1
2 (|0〉〈0|+ |1〉〈1|)

(ii) ρ2 = 1
2 (|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|)

(b) (0.5 pt.) In case of a qubit, the density matrix can be visualized as a
Bloch vector on the Bloch sphere with components ~r = (rx, ry, rz)

T

with ri = 〈σi〉.
Decide, which of the following states are pure or mixed and depict
them (approximately) on the Bloch sphere:

(i) ~r3 = ( 1√
2
, 1√

2
, 0)T .

(ii) ~r4 = (0.7, 0.7, 0)T .

(c) The Bloch equations describe the dynamics of a qubit under the
presence of decoherence and can be written as

d~r

dt
= ~r × ~ω(t)− rz − r0

z

T1
ẑ − rxx̂+ ry ŷ

T2
,

with the Hamiltonian of the qubit given as

H = −~
2
~ω(t)~σ,

with ~σ = (σx, σy, σz)
T , ~ω(t) = (ωx(t), ωy(t), ωz(t))

T and x̂, ŷ, ẑ the
unit vectors along the x, y, z direction of the Bloch sphere.

(i) (0.5 pt.) What is the meaning of the time constants T1 and T2

in the Bloch equations?

(ii) (0.5 pt.) Assume that the qubit’s Hamiltonian is given as H =
−~

2ωzσz and that the qubit is initially (time t = 0) in its excited
state |e〉. Further assume that the qubit’s equilibrium population
along the z−direction is given as r0

z = 0 and that both T1 and
T2 are infinite.
Write down the Bloch equations for this special case and cal-
culate the time-dependent occupation of the excited state, i.e.,
Pe(t) = 1

2 (1− rz(t)).
Note: Remember that the vector product between two vectors is
defined as ~a×~b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)T .

(iii) (1 pt.) Now assume that T1 and T2 are finite. Write down
the Bloch equations for this special case and calculate the time-
dependent occupation of the excited state, i.e., Pe(t) = 1

2 (1 −
rz(t)). What is different to the previous solution and why?

6. Measurement based Quantum Computation (7.5 pts.)

Measurement based quantum computation (MBQC), also referred to as
”one-way quantum computation”, is an alternative but computationally
equivalent model for quantum computation, with respect to the circuit
model. In MBQC, applying unitary transformations to the input state
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|ψout〉 = U |ψin〉 is achieved by entangling it to a (large) resource state, said
the “cluster state”, and later local projective measurements according to
suitable observables are performed onto the qubits of the cluster state. The
observables to measure are chosen so to induce the desired transformation
on the input state.

We recall the definition of the Pauli matrices σ̂k: renamed as X̂, Ŷ , Ẑ, i.e.

X̂ = (|0〉〈1|+ |1〉〈0|) .
=

(
0 1
1 0

)
Ŷ = (|0〉〈1| − |1〉〈0|) .

=

(
0 −i
i 0

)
Ẑ = (|0〉〈0| − |1〉〈1|) .

=

(
1 0
0 −1

)
(1)

Rotations:
Uk(φ) = e−

iφ
2 σ̂k (2)

E.g. Uz(φ) = e−
iφẐ
2 .

Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
. (3)

(a) First steps: implementation of the identity

We consider the general single-qubit state |ψ〉 = α|0〉+β|1〉. A second
qubit is prepared in the state |+〉 = 1/

√
2(|0〉 + |1〉). A CZ gate is

applied to the two qubits, with CZ = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ Ẑ.

|ψ〉 • X̂

|+〉 Z

1

Figure 2: Scheme representing the elementary quantum circuit for teleportation.
The box at the end of a line represents the measurement of the corresponding
qubit according to the observable indicated in the box (in this case X̂).

i. (2 pts.) Compute the resulting state expressing the second qubit
in the |±〉 basis.
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ii. (2 pts.) In order to implement the identity operator on the input
qubit, after the CZ gate the first qubit is measured in the |±〉
basis, i.e. we measure X̂, see Fig.2. After the measurement, the
second qubit state is projected onto a certain state. Compute in
which state the second qubit is projected. As compared to the
input state |ψ〉 = α|0〉 + β|1〉, how has this output state being
trasformed? Express the result in terms of the Hadamard gate
and X̂m, where m = 0 if the measurement outcome obtained
was 1, and m = 1 if −1.

These “extra” gates obtained on the input qubit are said “by-
product” operators; they are undesired results of the telepor-
tation procedure described above. However, they can be cor-
rected for, or simply their effect can be taken into account by
re-interpreting the measurement results at the end of the com-
putation.

(b) Implementation of a single qubit rotation

|ψ〉 • X̂φ

|+〉 Z

1

Figure 3: Scheme representing the elementary quantum circuit for gate tele-
portation. The box at the end of a line represents the measurement of the
corresponding qubit according to the observable indicated in the box (in this
case Uz(φ)X̂Uz(−φ)).

i. (1 pt.) Now consider the observable X̂φ ≡ U†z (φ)X̂Uz(φ) =

cosφX̂−sinφY = eiφ|0〉〈1|+e−iφ|1〉〈0|. Verify that this operator
can be equivalently written as |φ+〉〈φ+|−|φ−〉〈φ−| where we have
introduced the rotated basis |φ±〉 = 1/

√
2(|0〉 ± e−iφ|1〉).

ii. (2 pts.) This observable Uz(−φ)X̂Uz(φ) = |φ+〉〈φ+| − |φ−〉〈φ−|
is measured in the first qubit after the CZ gate, see Fig.3. Com-
pute what is the state projected onto the second qubit. As done
before, express the result in terms of the Hadamard gate and
X̂m, where m = 0 if the measurement outcome obtained was 1,
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and m = 1 if −1, and of the rotation Uz(φ).

This procedure can be concatenated in a clever way to obtain
universal single qubit rotations, and it can also be extended to
multi-qubit operations to yield universal quantum computation
in the so-called measurement based model.

(c) Other models of quantum computation

(0.5 pt.) We have seen in the course a computationally equivalent
model of quantum computation: the circuit model. What is a uni-
versal gate set and why is it useful? Give an example of universal
gate set.
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