
Quantum Optics and Quantum Informatics FKA173

Date and time: Tuesday, 24 October 2017, 08:30-12:30.
Examiners: Jonas Bylander (0702-53 44 39) and Thilo Bauch (0733-66 13 79).
Visits around 09:30 and 11:30.

1. Bloch sphere manipulations (1.5 pts.)

(a) Write down a general qubit state using the angles θ and φ and depict
it on the Bloch sphere. (0.5 pt.)

(b) Given two time-dependent fields Bx(t) and By(t) that couple to a
qubit, i.e. the Hamiltonian is given by

Ĥ = −~γ
2

(Bx(t)σ̂x +By(t)σ̂y) ,

with γ > 0, describe how to take the qubit from the state (|0〉+ |1〉) /
√

2
to the state (|0〉 − i |1〉) /

√
2. During how long time should the fields

be applied? (1 pt.)
Note: You can use the ”left hand rule” together with the time-
dependent rotation angle δ = γ

∫ t

0
dt′|B|(t′) around the field axis.

Keep in mind that you can change the fields along x and y direction
independently.

2. Rabi Hamiltonian and Jaynes-Cummings Hamiltonian (5.5 pts.)

(a) The Rabi Hamiltonian of an atom in presence of an external electro-
magnetic field is given by

Ĥ =
P̂2

2m
+ V (r) + er̂ ·E(t) = Ĥ0 − d̂ ·E(t),

where d̂ = −er̂ is the dipole operator. What approximation is used
to derive this Hamiltonian? (0.5 pt.)

(b) The Jaynes-Cummings Hamiltonian can be derived from the Rabi
Hamiltonian by replacing the classical field E(t) of a single mode in a

one dimensional cavity (resonator) by an operator Ê(t) = Êx(z, t) =
E0(â+ â†) sin (kz), resulting in

Ĥ = −~ω0

2
σz + ~ωâ†â+ g(âσ+ + â†σ−).

• What are the meanings of the three terms in the Hamiltonian?
(0.5 pt.)

• What approximation was used to derive this Hamiltonian and
what is the physical meaning of this approximation? (0.5 pt.)
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• In the two-dimensional subspace spanned by |g〉|n+1〉 and |e〉|n〉,
the Jaynes-Cummings Hamiltonian looks like

Ĥn = ~ω
(
n+

1

2

)
1̂− ~(ω0 − ω)

2
σz + g

√
n+ 1σx,

where |e〉 and |g〉 are respectively the excited and ground state
of the atom, and |n〉 is the photon number state. Here the Pauli
operators and the unity matrix 1̂ are represented in the |g〉|n+1〉
and |e〉|n〉 basis. Derive the Eigenenergies of the Hamiltonian
for zero detuning ω = ω0 and depict the energy spectrum of the
uncoupled (g = 0) and coupled (g 6= 0) atom-photon states. Put
the relevant energy differences into the drawings. (1 pt.)
Note: The eigenvalues λ± of a 2× 2 matrix can be found from(

a11 − λ±
) (
a22 − λ±

)
− a12a21 = 0,

where a11, a22 are the diagonal and a12, a21 the off-diagonal ele-
ments of the 2× 2 matrix.

• Depict the two eigenstates of the above Hamiltonian on the Bloch
sphere for zero detuning ω = ω0 and g > 0. Depict the coupling
energy 2g

√
n+ 1 on the Bloch sphere as well. (0.5 pt.)

(c) For large detuning between the field frequency and the atomic tran-
sition frequency (∆ = ω0 − ω, ~|∆| � g) we obtain the dispersive
Hamiltonian:

Ĥdisp = −1

2

(
~ω0 +

g2

~∆

)
σz +

(
~ω − g2

~∆
σz

)
â†â,

where σz is represented in the atom basis.

• What is the effective frequency of the atom when there are n
photons in the cavity? (0.5 pt.)

• The dispersive Hamiltonian can be used to read out the atom/qubit
state using coherent (microwave) photons. Explain explicitly
how such a measurement can be implemented, what is measured,
and how the qubit state can be detected. (1 pt.)

• Describe the nature of the back-action on the atom/qubit during
this dispersive readout. Motivate your answer with reference to
the dispersive Hamiltonian. (1 pt.)

3. Single-qubit density matrix; Ramsey free-induction decay (2 pts.)

Consider an ensemble of spin-1/2 systems quantized by a magnetic field
along ẑ in the laboratory frame of reference. Assume that the Larmor
frequency is ω0 � kBT/~, where T is the temperature, kB is Boltzmann’s
constant, and ~ is Planck’s constant.
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Let us assume that all spins are initially aligned with the field, i.e. in their
|0〉z eigenstate. Then, let a π/2|x pulse bring the spins onto the x̂ − ŷ
plane. After a while, we measure the spin polarization along the three
spatial directions and find the following average projections:

〈σ̂x〉 = rx 〈σ̂y〉 = ry 〈σ̂z〉 = rz = 0

(a) Determine the density matrix ρ and represent it in the Bloch sphere.

(b) For |rx| = |ry| = 1/2, does this density matrix characterize a pure
quantum state or a mixed state? What are the conditions on rx and
ry (and rz) for the ensemble to be in a pure state?

(c) What will rx, ry, and rz be after a long time (t � T2), assuming
that the different spins that constitute the ensemble are subject to
different (low-frequency noise) fields? Assume that there is no high-
frequency noise present.

(d) Now assume that there is also high-frequency noise, transverse to the
quantization axis (i.e. along x̂ and/or ŷ). Then what will rx, ry, and
rz be after a long time (t� T1)?

4. Quantizing Electrical Circuits (3.5 pts.)

Derive the quantum mechanical Hamiltonian of the single Cooper-pair
box, starting from the electrical circuit in the figure 2. Here the tunnel
junction is a parallel combination of a capacitance CJ and a Josephson

junction with flux dependent potential energy EJJ = −EJ cos
(

2π Φ
Φ0

)
,

where EJ is a constant and Φ the flux across the junction and Φ0 = h/(2e)
the superconducting flux quantum.

Figure 1: Circuit diagram of the single Cooper-pair box

(a) Write down the classical Lagrangian L(Φ, Φ̇) for the circuit. (1.5
pts.)
Note: First write the Lagrangian in branch flux representation and
then rewrite the Lagrangian in node flux representation making use
of Kirchhoff’s relations (constraints).
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(b) Find the conjugate momentum to the coordinate you chose. What is
the physical meaning of the conjugate momentum? (0.5 pt.)
Note: The conjugate momentum of the flux Φ is given by q = ∂L/∂Φ̇.

(c) Write down the classical Hamiltonian for the circuit. (0.5 pt.)
Note: Use the Legendre transformation to obtain the Hamiltonian:
H(Φn, qn) =

∑
n Φ̇nqn − L

(d) Going to quantum mechanics, what are the commutation relations
between all the operators in the Hamiltonian? (0.5 pt.)

(e) The quantized Hamiltonian, expressed in charge basis, is given by:

Ĥ =
∑
n

4EC(n− ng)2|n〉〈n| − EJ

2
(|n〉〈n+ 1|+ |n+ 1〉〈n|),

with EC = e2/(2CΣ) the Coulomb energy of a single electron on the
island and CΣ = CJ + Cg the island capacitance to ground.
Truncate the Hamiltonian to a two-level system and write it using
Pauli matrices. (0.5 pt.)

5. Superconducting qubit experiment (3 pts.)

In an elegant experiment, Hofheinz et al. generated and analyzed Fock
states (number states) and coherent states in a superconducting resonator,
using a superconducting qubit.1 The dynamics of energy exchange betwen
the resonator and the qubit near resonance can be approximated by the
Jaynes–Cummings model Hamiltonian [cf. question 2(b)], where we now
write g = ~Ω/2,

Ĥinteraction =
~Ω

2
(âσ̂+ + â†σ̂−). (1)

Hofheinz loaded Fock states into the resonator by using a superconduct-
ing qubit that could be brought in and out of resonance with the resonator.

(a) How can this frequency tuning be done with a superconducting qubit,
in the laboratory? How can manipulation pulses (gates) be experi-
mentally applied to the qubit? Give an example. (0.5 pt.)

Starting with an initially empty resonator and the qubit in its ground
state, |g, 0〉, the following program loads n photons into the resonator.

i. With the qubit and resonator far detuned in frequency, do a π
pulse on the qubit: |g, 0〉 → |e, 0〉.

ii. Bring the two systems into resonance for a time τ1, adjusted to
swap the excitation from the qubit to the resonator: |e, 0〉 →
|g, 1〉.

1Hofheinz et al., Nature vol. 454, p. 310–314 (2008).
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Figure 2: Data from Hofheinz et al. Note that the experimental measurement
fidelity is less than 100 %; therefore, the oscillations in Pe(τ) do not go from 0 %
(corresponding to the qubit’s ground state) to 100 % (excited state).

iii. Bring the systems out of resonance again.

iv. Do a π pulse on the qubit: |g, 1〉 → |e, 1〉.
v. Bring the systems into resonance for a time τ2: |e, 1〉 → |g, 2〉.
vi. Repeat until the desired state |g, n〉 has been obtained.

(b) How long should the interaction times τk be for k = 1, 2, . . . , n ?
(1 pt.)

In order to analyze the state of the resonator, after loading it with
photons, Hofheinz brought the qubit (in its ground state) into reso-
nance, now for a time τ , and then out of resonance again. He then
measured the probability to find the qubit in its excited state vs. the
time of interaction, Pe(τ). The figure shows the resulting data.

(c) Explain this data. Which states of the combined system are involved
in the oscillations? Why is the frequency different, depending on
which Fock state |n〉 had been prepared? Can you comment on the
similarity to stimulated emission? (1.5 pts.)

6. Quantum circuits and algorithms; entanglement (4.5 pts.)

(a) What does it mean that a quantum algorithm can solve certain prob-
lems efficiently? (0.5 pt.)
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(b) What is an entangling gate? What can entangled states be used for?
Give one example of a quantum circuit that represents a two-qubit
entangling gate and write down its matrix representation. (1 pt.)

(c) Compute the action of the gate in question (b) for a product-state
input that entangles the two qubits. Demonstrate that the output
state is indeed entangled. (2 pts.)

(d) Give one example of how an entangling gate can be implemented in
a physical system. (1 pt.)

6


