
Quantum Optics and Quantum Informatics FKA173

Date and time: Tuesday, 27 October 2015, 08:30-12:30.
Examiners: Jonas Bylander (0702-53 44 39) and Thilo Bauch (0733-66 13 79).
Visits around 09:30 and 11:30.

1. Bloch sphere manipulations (1.5 pts.)

(a) Write down a general qubit state and depict it on the Bloch sphere.
(0.5)

(b) Given two time-dependent fields Bz(t) and Bx(t) that couple to a
qubit, i.e. the Hamiltonian is given by

Ĥ = −1
2

(Bx(t)σ̂x + Bz(t)σ̂z) ,

describe how to take the qubit from the state |1〉 to the state (|0〉+ |1〉) /
√

2.
During how long time should the fields be applied?
Note: You can use the ”left hand rule” together with the time-
dependent rotation angle δ = 1

~
∫ t

0
dt′|B|(t′) around the field axis.

Keep in mind that you can change the fields along x and z direction
independently. (1)

2. Rabi Hamiltonian and Jaynes-Cummings Hamiltonian (5.5 pts.)

(a) The Rabi Hamiltonian of an atom in presence of an external electro-
magnetic field is given by

Ĥ =
P̂2

2m
+ V (r) + er̂ ·E(t) = Ĥ0 − d̂ ·E(t),

where d̂ = −er̂ is the dipole operator. What approximation is used
to derive this Hamiltonian? (0.5)

(b) The Jaynes-Cummings Hamiltonian can be derived from the Rabi
Hamiltonian by replacing the classical field E(t) of a single mode in a
one dimensional cavity (resonator) by an operator Ê(t) = Êx(z, t) =
E0(â + â†) sin (kz), resulting in

Ĥ = −~ω0

2
σz + ~ωâ†â + g(âσ+ + â†σ−).
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• What are the meanings of the three terms in the Hamiltonian?
(0.5)

• What approximation was used to derive this Hamiltonian and
what is the physical meaning of this approximation? (0.5)

• In the two-dimensional subspace spanned by |e〉|n〉 and |g〉|n+1〉,
the Jaynes-Cummings Hamiltonian looks like

Ĥn = ~ω

(
n +

1
2

)
1̂− ~(ω0 − ω)

2
σz + g

√
n + 1σx,

where |e〉 and |g〉 are respectively the excited and ground state
of the atom, and |n〉 is the photon number state. Derive the
Eigenenergies of the Hamiltonian for zero detuning ω = ω0 and
depict the energy spectrum of the uncoupled (g = 0) and coupled
(g 6= 0) atom-photon states. Put the relevant energy differences
into the drawings.
Note: The eigenvalues λ± of a 2× 2 matrix can be found from(

a11 − λ±
) (

a22 − λ±
)
− a12a21 = 0,

where a11, a22 are the diagonal and a12, a21 the off-diagonal ele-
ments of the 2× 2 matrix. (1.5)

(c) For large detuning (∆ = ω0 − ω, ~|∆| � g) between the field fre-
quency and the atomic transition frequency we obtain the dispersive
Hamiltonian:

Ĥdisp = −1
2

(
~ω0 +

g2

~∆

)
σz +

(
~ω − g2

~∆
σz

)
â†â.

• What is the effective frequency of the cavity when the atom (the
qubit) is in the ground state? (0.5)

• This system can be used to read out the qubit state using (mi-
crowave) photons. Explain explicitly how the system should be
modified, what is measured and how the qubit state can be de-
tected. (1)

• Describe the nature of the back-action on the qubit during this
dispersive readout. Motivate your answer with reference to the
dispersive Hamiltonian. (1)
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3. Ramsey fringes, mixed states and the Bloch equations (5 pts.)

Let a qubit start out in the ground state, and apply a sequence of two π/2
pulses separated by a time τ of free induction, followed by a projective
measurement onto the energy eigenbasis. The lab-frame Hamiltonian is
the same as that in question 1. Figure 1 shows the probability to find a
qubit in the ground state after this sequence (Ramsey fringes).

Figure 1: Ramsey interference fringes (superconducting qubit). Psw denotes
the probability to find the qubit in its ground state when measuring after the
second pulse (indicated by the red dot).

(a) Explain why the signal decays toward 0.5. What is the relevant char-
acteristic time scale usually called, and how long is this characteristic
time here? Explain why the signal does not initially swing between
0 and +1, but only between approximately 0.2 and 0.9. (2)

(b) Write down the Bloch equations for a spin-1/2,

ṙ = r×B(t)− rz − r0

T1
ẑ − rxx̂ + ry ŷ

T2
,

for the average projections onto the x, y, and z axes (Bloch vector),
starting right after the first π/2 pulse, i.e. at time tπ/2 when the qubit
state is on the equator. You can assume that the pulse was along the
x axis, so that the state points along the y axis at this moment in
time.
Solve the Bloch equations for the time τ of free-induction decay, i.e.
until right before the second π/2 pulse. Illustrate your results in the
Bloch sphere. (You can make an Ansatz for the form of the solution
and then verify it. It’s ok to assume resonant pulses.) (2)

(c) Write down the density matrix for the times (i) before the first π/2
pulse; (ii) after the first π/2 pulse; and (iii) at time τ . Is the state
pure or mixed at the times (i–iii)? (1)
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4. Quantizing Electrical Circuits (3.5 pts.)

Derive the quantum mechanical Hamiltonian of the single Cooper-pair
box, starting from the electrical circuit in the figure 2. Here the tunnel
junction is a parallel combination of a capacitance CJ and a Josephson
junction with flux dependent potential energy EJJ = −EJ cos

(
2π Φ

Φ0

)
,

where EJ is a constant and Φ the flux across the junction and Φ0 = h/(2e)
the superconducting flux quantum.

Figure 2: Circuit diagram of the single Cooper-pair box

(a) Write down the classical Lagrangian L(Φ, Φ̇) for the circuit.
Note: First write the Lagrangian, i.e. kinetic energy minus potential
energy, in branch flux representation and then rewrite the Lagrangian
in node flux representation making use of Kirchhoff’s relations (con-
straints).(1.5)

(b) Find the conjugate momentum to the coordinate you chose, and mo-
tivate the choice of coordinate.
Note: The conjugate momentum of the flux Φ is given by the charge
q = ∂L/∂Φ̇. (0.5)

(c) Write down the classical Hamiltonian for the circuit.
Note: Use the Legendre transformation to obtain the Hamiltonian:
H(Φn, qn) =

∑
n Φ̇nqn − L (0.5)

(d) Going to quantum mechanics, what are the commutation relations
between all the operators in the Hamiltonian? (0.5)

(e) The quantized Hamiltonian, expressed in charge basis, is given by:

Ĥ =
∑

n

4EC(n− ng)2|n〉〈n| −
EJ

2
(|n〉〈n + 1|+ |n + 1〉〈n|),

with EC = e2/(2CΣ) the Coulomb energy of a single electron on the
island and CΣ = CJ + Cg the island capacitance to ground.
Truncate the Hamiltonian to a two-level system and write it using
Pauli matrices. (0.5)
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5. Quantum circuits and algorithms (6 pts.)

(a) Show that for the controlled-Z operation on two qubits (see Fig. 3),
the outcome is the same regardless of which qubit controls which.
(1)

Figure 3: Controlled-Z gate.

(b) Construct a CNOT gate (see Fig. 4) from one controlled-Z gate and
two Hadamard gates, specifying control and target qubits. (1)

Figure 4: Controlled-NOT gate.

(c) The quantum teleportion circuit is shown in Fig. 5. Explain what
happens throughout this algorithm. Explicitely write out the states
|Ψ0〉, |Ψ1〉, and |Ψ2〉. Explain how Bob obtains the output state,
based on the measurement results m and n. (2.5)

|Ψ|Ψ

ΗFrom Alice to Bob

0 2|Ψ1

Alice creates

A

B
O
B
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I
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σ σx z
m n

Η m

n

From Alice to Bob

|0

|0

a Bell pair

Figure 5: Quantum teleportation circuit.

(d) The Bell states are the “maximally entangled” two-qubit states. Ex-
plain what this means. Demonstrate that the CNOT is an entangling
gate by calculating the reduced density matrix for one of the qubits
in a Bell pair |Ψ〉,

ρ̂1 = Tr(ρ̂2) =
1∑

j=0

〈j2|Ψ〉〈Ψ|j2〉.

(1.5)
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