
Quantum Informatics FKA172

Time: Monday, March 14, 2011, 08:30-12:30
Examiner: Thilo Bauch (tel 772 3397)
Allowed reference: A hand written A4 sheet (both sides may be filled) and
a Chalmers approved calculator.
Grading: The points awarded for each question is indicated by that question
and in case of subquestions the division of the point is also indicated. The total
number of points is 24.

1. Bloch sphere manipulation (2 pts.)

Given two fields Bz(t) and By(t) that couple to a qubit, describe how to
take the state |0〉 to the state (|0〉− i|1〉)

√
2. During how long time should

the fields be applied?

2. Density matrix (2 pts.)

A qubit has 〈σz〉 = 0.8, 〈σy〉 = 0, and 〈σx〉 = 0.6. Evaluate the density
matrix of the qubit. Is the qubit in a mixed or pure state after a π/4-
rotation about the x-axis?

3. Rabi Hamiltonian and Jaynes-Cummings Hamiltonian (6 pts.)

a) The Rabi Hamiltonian of an atom in presence of an external electro-
magnetic field is given by

Ĥ =
P̂2

2m
+ V (r) + er ·E(t) = Ĥ0 − d̂ ·E(t),

where d̂ = −er is the dipole operator. Under which condition is this
equation valid? (0.5)

b) The Jaynes-Cummings Hamiltonian can be derived from the Rabi
Hamiltonian by replacing the classical field E(t) of a single mode in a

one dimensional cavity (resonator) by an operator Ê(t) = Êx(z, t) =
E0(â+ â†) sin (kz), resulting in:

Ĥ = − h̄ω0

2
σz + h̄ωâ†â+ g(âσ+ + â†σ−). (1)

This Hamiltonian acts in the Hilbert space spanned by the vectors |g〉|n〉
and |e〉|n〉, where |g〉 and |e〉 are the ground state and excited state of
the two level system, respectively. |n〉 are the eigenstates of the photon
number operator n̂.

• i) What is the meaning of the three terms in the hamiltonian? (1
pt.)

• ii) What approximation was used to derive this hamiltonian and what
is the physical meaning of this approximation? (0.5 pt.)
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• iii) From the above Hamiltonian (Equation 1) derive the Hamiltonian
in the two dimensional subspace spanned by |g〉|n + 1〉 and |e〉|n〉.
(Hint: Evaluate the matrix elements in the two dimensional subspace
and represent the final result using the Pauli matrices.) (1 pt.)

• iv) Depict the energy spectrum of the uncoupled (g = 0) and coupled
(g 6= 0) atom-photon states for zero detuning ω = ω0. What is the
quantum electrodynamic Rabi frequency? (1 pt.)

c) For large detuning between the field frequency and atom transition
frequency (h̄|ω − ω0| � g) we obtain the dispersive Hamiltonian:

Ĥdisp = −1

2

(
h̄ω0 +

g2

h̄∆

)
σz +

(
h̄ω − g2

h̄∆
σz

)
â†â.

• i) What is the frequency of the cavity when the atom (qubit) is in
the excited state (0.5 pt.)

• ii) How would you readout the (atom) qubit state, and would there
be any back action on the qubit during readout? (1.5 pts.)

4. Bloch equations (3 pts.)

The Bloch equations describe the motion of a spin-1/2 on/in the Bloch
sphere r(t) = (rx(t), ry(t), rz(t)) under the influence of control fields B(t)
and dissipation described by phenomenological timescales for relaxation/mixing
T1 and dephasing T2

ṙ = − 1

h̄
B× r− 1

T1

(
rz − r0z

)
ẑ − 1

T2
(rxx̂+ ry ŷ) , (2)

a) How are the two timescales T1 and T2 related to the noise fields δBn =
(δBnx, δBny, δBnz) and their spectral densities? (2 pts.)
b) What is the meaning of r0z and what is its value for the following two
cases: zero temperature and infinite temperature? (1 pt.)

5. Superconducting qubits (1 pt.)

a) What are the pros and cons of using superconducting qubits for the
realization of a quantum computer? (0.5 pt.)

b) A typical phase qubit has at the working point (0.9 < Ib/Ic < 1) a
transition frequency between the ground state and the first excited state
ν01 = ω01/2π ' 5GHz. What is the temperature range at which you can
operate the qubit? (Boltzmann constant kB ' 1.38 · 10−23 J/K, Planck
constant h ' 6.63 · 10−34 Js) (0.5 pt.)

6. Measurements of Rabi oscillations in a phase qubit (3 pts.)

a) Explain how the measurement of Rabi oscillations between the ground
state and the first excited state are performed in a phase qubit (current
biased Josephson junction). Include sketches of the timing sequence for
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the bias current and the harmonic microwave signal inducing the Rabi
oscillations. Here we assume that the frequency of the harmonic microwave
signal fmw is equal to the transition frequency of the qubit ν01.(1 pt.)

b) Add to the timing sequence sketches of the tilted washboard potential,
including energy levels and their population, during

• the initialization (working point) of the qubit

• the microwave manipulation of the qubit

• the read out of the qubit (1 pt.)

c) During the read out of your qubit you want to discriminate between the
qubit being in the ground state or in the first excited state. In order to
discriminate between the two states how would you choose the amplitude
of the read out current pulse? Include a sketch showing the switching
probability from the zero voltage state to the finite voltage state of the
Josephson junction as function of read out current pulse amplitude for
both the qubit being in the ground state and the qubit being in the first
excited state. (1 pt.)

7. The CNOT gate (1 pt.)

For the CNOT gate write down
a) the circuit symbol
b) the truth table, i.e. the output states for the different input basis states
c) the corresponding unitary matrix

8. Quantum Teleportation (2 pts.)

Explain the concept of quantum teleportation, including the initial setup,
the people involved and their resources, the main steps and what is actu-
ally teleported.

9. The No-Cloning Theorem (1 pt.)

What is stated in the no-cloning theorem and how is it related to telepor-
tation?

10. Deutsch’s Algorithm (3 pts.)

In Fig.1 a circuit implementing Deutsch’s algorithm is shown. What is
the problem solved by this algorithm? How much faster is this algorithm
compared to any classical algorithm for the same problem? Show explicitly
how the algorithm works, i.e. write down the states |Ψ0〉, |Ψ1〉, |Ψ2〉, |Ψ3〉,
and specify what measurement should be performed and how the result
answers the problem.
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FIG. 6: A circuit to perform Deutsch’s agorithm. (From Nielsen & Chuang), Fig. 1.19.

The first step is to perform a Hadamard on each qubit resulting in

|Ψ1� =

� |0� + |1�√
2

�� |0� − |1�√
2

�
.

Applying Uf to the state |x�(|0� − |1�)/
√

2 gives

|x� (|f(x)� − |1 ⊕ f(x)�)√
2

=

� |x�(|0�−|1�)√
2

, f(x) = 0
|x�(|1�−|0�)√

2
, f(x) = 1

�
= (−1)f(x) |x�(|0� − |1�)√

2
.

Thus we have two possible states after the Uf ,

|Ψ2� =





±
�

|0�+|1�√
2

��
|0�−|1�√

2

�
, f(0) = f(1)

±
�

|0�−|1�√
2

��
|0�−|1�√

2

�
, f(0) �= f(1).

The final Hadamard results in

|Ψ3� =





±|0�
�

|0�−|1�√
2

�
, f(0) = f(1)

±|1�
�

|0�−|1�√
2

�
, f(0) �= f(1),

which we can write more compactly as

|Ψ3� = ±|f(0) ⊕ f(1)�
� |0� − |1�√

2

�
,

noting that f(0) ⊕ f(1) equals zero for f(0) = f(1), and one otherwise. By reading out the first qubit we can now
determine the global property f(0)⊕ f(1) using only a single evaluation of Uf ! A classical algorithm would need two
evaluations. This demonstrates that it in principle is possible to use quantum parallelism to speed up computations.

B. Deutsch-Josza’s algorithm (1992)

The demonstration of speedup for a single bit function is impressive, but it would be even more impressive to see
how the speedup scale with the size of the input of the function. Consider the generalized circuit in Fig. 7. Here the
upper |x� line is a register of n qubits. The operation H⊗n performs a Hadamard on each of the n qubits. The box
Uf is a n + 1 qubit unitary transformation |x�|y� → |x�|y ⊕ f(x)�, where f(x) now is a single bit valued function
taking n-bit words as input. The global question we want to answer is whether f(x) is constant or balanced. Balanced
implies that the output is zero for exactly half of the input values (and one for the other half). Classically we need
to evaluate f(x) for more than half of the inputs (2n/2 + 1 times) to know whether it is balanced or constant with
certainty. Let’s see what we can do with a quantum algorithm. The input state is

|Ψ0� = |0�⊗n|1�,

Figure 1: A circuit implementing Deutsch’s algorithm
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