
CHALMERS, GÖTEBORGS UNIVERSITET

EXAM for
ARTIFICIAL NEURAL NETWORKS

COURSE CODES: FFR 135, FIM 720 GU, PhD

Time:
Place:
Teachers:

Allowed material:
Not allowed:

October 27, 2023, at 1400 − 1800

Johanneberg
Bernhard Mehlig, 073-420 0988 (mobile)
Teacher visits at 1430 and 1730

Book B. Mehlig, Machine Learning with Neural Networks, CUP
Any other written material, calculator

Maximum score on this exam: 15 points.
Maximum score for homework problems: 9 points.
To pass the course it is necessary to score at least 6 points on this written
exam.
CTH >13.5 passed; >17 grade 4; >21.5 grade 5,
GU >13.5 grade G; > 19.5 grade VG.

1. Hopfield model. Figure 1 shows a Hopfield model with three neurons
s1, s2, and s3, and symmetric weights wij.
(a) Write down the energy function for this network (assume that the thresh-
olds are zero). Hint: the general form is H = −1

2

∑
ij wijsisj. (0.5p).

(b) Show that the energy cannot increase if you update the first neuron using
s′1 = sgn(

∑
j w1jsj). (1.5p).

(c) Now consider a synchronous update, updating all neurons at the same
time with s′i = sgn(

∑
j wijsj). Show that the energy can increase. (1p).

Figure 1: Hopfield model with three neurons. Question 1.

1



Solution: (a)

H = −1
2

∑
ij

wijsisj

= −1
2

[
w12s1s2 + w13s1s3 + w23s2s3 + w32s2s1 + w31s3s1 + w32s3s2

]
= −

[
w12s1s2 + w13s1s3 + w23s2s3

]
.

(b) We use the update rule s′1 = sgn(w12s2 + w13s3). Let

H ′ = −
[
w12s

′
1s2 + w13s

′
1s3 + w23s2s3

]
.

We consider two cases. First, if s′1 = s1 then H ′ = H. Second, if s′1 =
−s1 then

H ′ −H =
[
w12s1s2 + w13s1s3 − w23s2s3

]
+
[
w12s1s2 + w13s1s3 + w23s2s3

]
= 2w12s1s2 + 2w13s1s3 = 2s1(w12s2 + w13s3) < 0 ,

since the update rule implies that w12s2 + w13s3 has the same sign as s′1,
opposite of s1. We conclude: the energy cannot increase.

(c) Now consider

H ′ = −
[
w12s

′
1s
′
2 + w13s

′
1s
′
3 + w23s

′
2s
′
3

]
.

Assume s′1 = −s1, s′2 = −s2, s′3 = s3. In this case

H ′ −H = 2s3(w13s1 + w23s2) > 0 ,

since the update rule implies that w13s1 + w23s2 = w31s1 + w32s2 has the
same sign as s′3, the same as s3. So in this case the energy can increase.

2. Linearly inseparable problem. Figure 2 shows a classification problem
where input patterns x(µ) inside the hashed region have targets t(µ) = −1
and patterns outside of the hashed region have targets t(µ) = 1. Design
a fully-connected neural network with two inputs, a hidden layer with M
neurons, and an output layer with one neuron that solves the classification
problem. Use g(b) = sgn(b) for all neurons. Denote the weights leading from
the input to the hidden layer by wij, the thresholds of the hidden layer by
θi, the weights leading from the hidden layer to the output layer by Wi and
the threshold of the output neuron by Θ. Orient the hidden weight vectors
wi as shown in Figure 2. Clearly write down all the parameter values chosen
for the network. (2p).

2



Figure 2: Classification problem for question 2. Targets in the hashed region
( ) are t = −1, outside t = 1.

Solution: The decision boundaries are given by the following weights and
thresholds:

w1 =

[
0
1

]
, θ1 = 1;w2 =

[
1
0

]
, θ2 = 1;w3 =

[
0
−1

]
, θ3 = −2;w3 =

[
−3
2

]
, θ4 = 1 .

The network output should evaluate to unity for all hidden-neuron states,
except when all Vj = −1. In that case the network output should be −1. A
possible choice of output weights and threshold is: W1 = W2 = W3 = W4 = 1
and Θ = −3.

3. Backpropagation. Figure 3 shows an autoencoder with a bottleneck
that has just one single neuron that computes the latent variable z = g(b)
with b = w · x − θ. The outputs compute Oi = g(Bi) with Bi = Wiz − Θi.
Derive the learning rules for the bottleneck weights w and threshold θ using
the energy function H = 1

2

∑
i(xi −Oi)

2. (2p).

Figure 3: Network layout for question 3. Not all connections are shown.

Solution: The energy function reads H = 1
2

∑
i(xi − Oi)

2. The neurons

3



calculate

z = g(b) with b =
∑
j

wjxj − θ

Oi = g(Bi) with Bi = Wiz −Θi .

To derive the learning rule for the hidden weights, we use δwj = −η∂H/∂wj.
We have

∂H

∂wj
= −

∑
i

(xi −Oi)
∂Oi

∂wj

∂Oi

∂wj
= g′(Bi)

∂Bi

∂wj
= g′(Bi)Wi

∂z

∂wj
= g′(Bi)Wig

′(b)
∂b

∂wj

= g′(Bi)Wig
′(b)xj .

This gives

δwj = η
∑
i

(xi −Oi)g
′(Bi)Wig

′(b)xj .

In an analogous way one obtains the learning rule for the threshold:

δθ = −η
∑
i

(xi −Oi)g
′(Bi)Wig

′(b) .

4. Feature map. Figure 4 shows two patterns. Design a convolutional
network with one convolution layer with one single 3×3 kernel with ReLU
activation function (equal to zero for b < 0 and equal to b for b ≥ 0), zero
threshold, and stride [1,1]. The resulting feature map is fed into a 3×3 max-
pooling layer with stride [1,1]. Finally there is a fully connected output layer
with a single output neuron with Heaviside activation function.

Find suitable weights of the feature map, as well as weights and threshold of
the output neuron that together allow the network to distinguish the digits,
by assigning output 1 to the input ”2”, and output 0 to input ”8”. For both
patterns, determine the resulting feature map, the output of the max-pooling
layer, and the network output. (3p).

Figure 4: Input patterns for question 4.

4



Figure 5: Kernel used for solution of question 4, where � corresponds to a
unit weight, and � to a zero weight.

Solution: A possible choice for the 3 × 3 kernel is shown in Figure 5. Us-
ing this kernel together with the ReLU activation function, we obtain the
following feature maps for the two input patterns:

1 3 2
4 7 4
2 4 2
4 7 4
2 3 1

 and


2 4 2
4 8 4
3 6 3
4 8 4
2 4 2

 .
Next, applying the max-pooling layer yields7

7
7

 and

8
8
8

 .
Nownset the output weights to

W =
[
−1 −1 −1

]
,

and the output threshold to Θ = −22. Then the network output evaluates
to 1 when feeding the pattern ‘2’, and to 0 upon feeding the pattern ‘8’.

5. Recurrent network. Figure 6 shows a simple recurrent network with
one hidden neuron V (t), one input x(t) and one output O(t). The network
learns a time series of input-output pairs [x(t), y(t)] for t = 1, 2, 3, . . . , T .
Here t is a discrete time index and y(t) is the target value at time t (the tar-
gets are denoted by y to avoid confusion with the time index t). The hidden
unit is initialised to a value V (0) at t = 0. This network can be trained by
backpropgation by unfolding it in time.

(a) Draw the unfolded network, and label the connections using the labels
shown in Figure 6. (0.5p).

(b) Write down the dynamical rules for this network, the rules that determine
V (t) in terms of V (t− 1) and x(t), as well as O(t) in terms of V (t). Assume
that both V (t) and O(t) have the same activation function g(b). (0.5p).

(c) Derive the learning rule for w(ov) for gradient descent on the energy func-
tion

H =
1

2

T∑
t=1

E(t)2 where E(t) = y(t)−O(t) . (1)

5



Denote the learning rate by η. (1p).

(d) Derive the learning rule for w(vx). (1p).

Figure 6: Recurrent network, question 5.

Figure 7: Unfolded network, question 5.

Solution: (a) The unfolded network is drawn in Figure 7.

(b) The dynamical rules are

V (t) = g
(
w(vv)V (t− 1) + w(vx)x(t)− θ(v)

)
, (2a)

O(t) = g
(
w(ov)V (t)− θ(o)

)
(2b)

for t = 1, 2, . . ..

(c) Gradient descent using (1) yields

δw(ov) = η

T∑
t=1

E(t)
∂O(t)

∂w(ov)
= η

T∑
t=1

E(t)g′(B(t))V (t) = η

T∑
t=1

∆(t)V (t) , (3)

where ∆(t) = E(t)g′(B(t)) is the output error, B(t) = w(ov)V (t− 1)− θ(o) is
the local field of the output neuron at time t, and we used Equation (2b).

6



(d) Gradient descent using (1) yields

δw(vx) = η
T∑
t=1

E(t)
∂O(t)

∂w(vx)
= η

T∑
t=1

∆tw
(ov) ∂V (t)

∂w(vx)
. (4)

Now evaluate the derivative ∂V (t)/∂w(vx). Equation (2a) yields the recursion

∂V (t)

∂w(vx)
= g′(b(t))

[
x(t) + w(vv)∂V (t− 1)

∂w(vx)

]
(5)

for t ≥ 1. Since ∂V (0)/∂w(vv) = 0, Equation (5) implies:

∂V (1)

∂w(vv)
= g′(b(1))x(1) ,

∂V (2)

∂w(vv)
= g′(b(2))x(2) + g′(b(2))w(vv)g′(b(1))x(1) ,

...

∂V (T − 1)

∂w(vv)
= g′(b(T − 1))x(T − 1) + g′(b(T − 1))w(vv)g′(b(T − 2))x(T − 2) + . . .

∂V (T )

∂w(vv)
= g′(b(T ))x(T ) + g′(b(T ))w(vv)g′(b(T − 1))x(T − 1) + . . .

The terms in this sum can be regrouped as described on p. 164 in the course
book. Defining the errors as

δ(t) =

{
∆(T )w(ov)g′(b(T )) for t = T ,

∆(t)w(ov)g′(b(t)) + δ(t+ 1)w(vv)g′(b(t)) for 0 < t < T ,
(6)

one can write the learning rule in the usual way:

δw(vx) = η
∑
t

δ(t)x(t) . (7)

Note that the sum involves x evaluated at t while the learning rule for δw(vv)

involves V evaluated at t− 1, consistent with Equation (2a).

6. Free energy of the Hopfield model. The free energy of the Hopfield
model is defined as

F (β) = − 1

β
logZ with Z =

∑
s

e−βH(s) and H(s) = −1
2

∑
i,j

wijsisj

(8)

The sj take values ±1. In mean-field theory, one approximates the energy
function H(s) using

sisj ≈ si〈sj〉+ 〈si〉sj − 〈si〉〈sj〉 . (9)

7



where the average 〈· · · 〉 is over the Boltzmann distribution. (a) Use Hebb’s

rule wij = N−1
∑

µ x
(µ)
i x

(µ)
j to write H(s) as a function of the order parame-

ters mµ = N−1
∑

j x
(µ)
j 〈sj〉. Here N is the number of neurons in the network.

Hint: the result is a linear function of si, with a constant term that does not
depend on si, and a term linear in si. (1p).

(b) Using this result, compute the free energy by averaging over si = ±1
with the Boltzmann distribution. (1p).

Solution: (a) Using Hebb’s rule and Equation (9), we find that the energy
function becomes

H(s) = −1

2

∑
i,j

1

N

∑
µ

x
(µ)
i x

(µ)
j sisj ≈ −

1

2

∑
i,j

1

N

∑
µ

x
(µ)
i x

(µ)
j si〈sj〉

− 1

2

∑
i,j

1

N

∑
µ

x
(µ)
i x

(µ)
j 〈si〉sj +

1

2

∑
i,j

1

N

∑
µ

x
(µ)
i x

(µ)
j 〈si〉〈sj〉

= −1

2

∑
i,µ

x
(µ)
i simµ −

1

2

∑
j,µ

x
(µ)
j sjmµ +

N

2

∑
µ

mµmµ

=
N

2

∑
µ

mµmµ −
∑
i,µ

x
(µ)
i simµ. (10)

(b) Starting from the definition (8) of the partition function, we have

Z =
∑
s
e−βH(s) ≈

∑
s
e−β

N
2

∑
µm

2
µ+β

∑
i,µmµx

(µ)
i si

= e−
βN
2

∑
µm

2
µ

∑
s
eβ

∑
i,µmµx

(µ)
i si . (11)

The sum over s includes all combinations s1 = ±1, . . . sN = ±1. The next
step is to rewrite the factor that contains this sum in the following way∑

s

∏
i

eβ
∑
µmµx

(µ)
i si . (12)

Now we can evaluate the sum over s:∑
s

∏
i

eβ
∑
µmµx

(µ)
i si =

∏
i

∑
si=±1

eβ
∑
µmµx

(µ)
i si =

∏
i

2 cosh (
∑
µ

mµx
(µ)
i ) . (13)

Inserting this expression into Equation (11) gives

F (β) = − 1

β
logZ =

N

2

∑
µ

m2
µ −

1

β

∑
i

log[2 cosh (
∑
µ

mµx
(µ)
i )] . (14)

See the solution to Exercise 3.1 to learn about the significance of the free
energy.

8



Errata for Machine learning with neural networks
Bernhard Mehlig, Cambridge University Press (2021)

p. 32 l. 3 ‘∂H/∂sm’ should be replaced by ‘−∂H/∂sm’.
p. 32 l. 11 ‘wii > 0’ should be replaced by ‘wii = 0’.

p. 32 l. 21 should read: ‘H = − 1
2

∑
ij wijg(bi)g(bj) +

∑
i θig(bi) +

∫ bi
0

dbbg′(b),

with bi =
∑
j wijnj − θi , cannot increase. . . ’.

p. 37 l. 16 replace ‘
√
N ’ by ‘N−1/2’.

l. 17 replace ‘〈bi(t)〉 ∼ N ’ by ‘〈bi(t)〉 = O(1)’.
p. 48 eq. (3.46) replace ‘〈ni〉’ by ‘〈si〉’.
p. 54 eq. (4.5c) replace ‘−βbm’ by ‘2βbm’.
p. 55 eq. (4.5d) replace ‘βbm’ by ‘−2βbm’.
p. 61 eq. (4.18) the sum should be over distinct patterns x.

p. 67 alg. 3 add superscripts ‘(µ) ’ to ‘δwmn’, ‘δθ
(v)
n ’, and ‘δθ

(h)
n ’.

p. 72 l. 12 the list should read ‘1, 2, 4, and 8’.
p. 85 fig. 5.11 switch the labels ‘10’ and ‘50’.
p. 86 fig. 5.12 permute the axis labels clockwise for consistency with fig. 5.8.
p. 93 fig. 5.22 switch the labels ‘1111’ and ‘1101’ in the right panel.

p. 97 eq. (6.6a) insert ‘V
(µ)
n ’ before the ‘≡’ sign.

p. 106 l. 18 should read ‘a compromise, reducing the tendency of the network to
overfit at the expense of training accuracy’.

p. 117 fig. 7.5 the hidden neurons should be labeled ‘j = 0, 1, 2, 3’ from bottom to top.
p. 118 fig. 7.6 exchange labels ‘1’ and ‘2’.

eq. (7.9) should read ‘O1 = sgn(−V0 + V1 + V2 − V3)’.
p. 121 fig. 7.10 change ‘w(L−2)’ to ‘w(L)’.
p. 122 eq. (7.17) replace ‘J’ by ‘J′’, also in the two lines above the equation.

p. 123 eq. (7.19) should read ‘[δ(`)]T = [δ(L)]TJL−` with JL−` = [D(L)]−1J′L−`D(`)’.
p. 131 eq. (7.45) replace ‘Ol’ by ‘Oi’.
p. 139 l. 33 replace ‘the Lagrangian (7.57)’ by ‘ 12δw ·Mδw’.
p. 160 l. 15 delete ‘then Lij = δij . In this case’.
p. 161 l. 19 replace ‘negative’ by ‘positive’, and ‘positive’ by ‘negative’ in the next line.
p. 171 l. 23 the upper limit of the second summation should be ‘M ’.
p. 197 alg. 10 replace ‘sj = 0’ by ‘sj = 1’ in line 2 of Algorithm 10.
p. 202 l. 37 replace ‘positive’ by ‘non-negative’.
p. 203 l. 21 should read ‘Alternatively, assume that w∗ = u+ iv can be written as an analytic

function of r = r1 + ir2. . . ’.
l. 27 add ‘See Ref. [2]’.

p. 204 l. 5 replace ‘sin(2πx1)’ by ‘sin(πx1)’. Same in caption of fig. 10.17.
p. 225 l. 5,6 replace ‘two’ by ‘two (three)’ and ‘lost’ by ‘lost (drew)’.

Gothenburg, October 20 (2023)

9


