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1. Boltzmann machine. A deterministic update rule for a restricted Boltz-
mann machine with N visible neurons vj and M hidden ones hi reads:

h′m = sgn(b(h)m ) , and v′n = sgn(b(v)n ) , (1)

with b
(h)
i =

∑N
j=1wijvj − θ

(h)
i and b

(v)
j =

∑M
i=1 hiwij − θ

(v)
j . Show that the

energy function of the restricted Boltzmann machine

H = −
M∑
i=1

N∑
j=1

wijhivj +
N∑
j=1

θ
(v)
j vj +

M∑
i=1

θ
(h)
i hi (2)

cannot increase under this rule (2p).

Solution: The deterministic update rule follows from the deterministic limit
of Eq. (4.30) in the course book [where p(b) = (1 + exp−2βb)−1 with noise
level β−1]:

h′m = sgn(b(h)m ) , and v′n = sgn(b(v)n ) , (3)

with b
(h)
i =

∑N
j=1wijvj − θ

(h)
i and b

(v)
j =

∑M
i=1 hiwij − θ

(v)
j . Consider first the

changes in H [Eq. (2)] when updating the hidden neurons, keeping the states
of the visible neurons unchanged (constant). We write

H = −
M∑
i=1

hi

( N∑
j=1

wijvj − θ(h)i

)
+ const . (4)
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This allows us to express the change in H as

H ′ −H = −
M∑
i=1

(h′i − hi)
( N∑
j=1

wijvj − θ(h)i

)
. (5)

Suppose that hi = 1 and h′i = −1, so that h′i − hi < 0. It follows from

Equation (3) that the sign of
∑N

j=1wijvj − θ
(h)
i equals h′i < 0. Therefore

H ′ −H < 0. Now assume that hi = −1 and h′i = 1. In this case h′i − hi > 0

and
∑N

j=1wijvj − θ
(h)
i > 0. Again H ′ − H < 0. When h′i = hi, the energy

function does not change.
In summary, H cannot increase when updating the hidden neurons (keeping
the states of the visible neurons fixed). Here the argument works for syn-
chronous updates of the hidden neurons, because there are no interactions
between them. For the Hopfield model, the energy function can increase un-
der synchronous updates. In a similar fashion one can show that H cannot
increase under synchronous updates of the visible neurons, if one keeps the
states of the hidden neurons constant.

2. Linear unit. The Boolean AND problem (Figure 1) cannot be solved by
a linear unit (a neuron with activation function g(b) = b) with weights w and
threshold θ. To show this, solve ∂H/∂w = 0 and ∂H/∂θ = 0 for w and θ,
where H = 1

2

∑
µ(t(µ) − O(µ))2. Using these weights and thresholds, demon-

strate that O(µ) 6= t(µ). Hint: express the linear system to solve in terms of
〈xxT〉, 〈x〉, 〈tx〉, and 〈t〉, where 〈· · · 〉 is an average over patterns (1.5p).

Qualitatively sketch the contours of H as a function of the weight components
w1 and w2 for a fixed value of θ (take the value you obtained above) (0.5p).

Solution: The energy function for a linear unit with threshold θ can be
written as H = 1

2

∑
µ(t(µ)−w ·x(µ) + θ)2. The derivatives of H with respect

Figure 1: Boolean AND problem. Left: value table. Right: input plane,
decision boundary, and weight vector w. The pattern x = [1, 1] with target
t = 1 is marked as �, the patterns with t = −1 as �. Question 2.
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Figure 2: Energy function H(w1, w2, θ = 3
2
) for the Boolean AND problem.

Question 2.

to w and θ are

∂H

∂w
= −p

(
〈tx〉 − 〈xxT〉w + θ〈x〉

)
,

∂H

∂θ
= p
(
〈t〉 −wT〈x〉+ θ

)
. (6)

Here 〈· · · 〉 = p−1
∑p

µ=1 · · · is the average over patterns. For the AND prob-
lem (Figure 5.7 in the course book),

〈tx〉 =

[
0
0

]
, 〈xxT〉 = 1

4

[
2 1
1 2

]
, 〈x〉 = 1

2

[
1
1

]
, and 〈t〉 = −1

2
. (7)

Now set the derivatives to zero to determine w and θ. This gives w = [1, 1]T

and θ = 3
2
. With these weights and threshold, we findO(1) = w·x(1)−θ = −3

2
,

O(2) = −1
2
, O(3) = −1

2
, and O(4) = 1

2
. So O(mu) 6= t(mu). In other words: H

is non-zero.
However, one can check that the values obtained for w and θ correspond to
a local minimum of H at w = [1, 1]T and θ = 3

2
, where H = 1

2
. Since H is

non-zero at the minimum, the optimal solution is only approximate. Figure
2 shows how the energy function depends on w1 and w2 for θ = 3

2
.

3. Backpropagation. Consider the residual network shown in Figure 3,
where V (0) = x is the input and V (4) = O is the output. Write down the
dynamical rules for all neurons V (`) for ` = 1, . . . 4. Derive the learning rules
for their weights and thresholds, using gradient descent for the energy func-
tion H = 1

2
(t−O)2. (2p).

Figure 3: Residual network, chain of neurons with a skipping connection.
Question 3.
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Solution: Eq. (7.34) in the course book yields for the weight up-
dates:

δw(43) = η(t−O)g′(b(4))V (3) (8a)

δw(32) = η(t−O)g′(b(4))w(43)g′(b(3))V (2) (8b)

δw(31) = η(t−O)g′(b(4))[w(43)g′(b(3)V (1) (8c)

δw(21) = η(t−O)g′(b(4))w(43)g′(b(3))w(32)g′(b(2))V (1) (8d)

δw(10) = η(t−O)g′(b(4))w(43)g′(b(3))[w(31) + w(32)g′(b(2))w(21)]g′(b(1))V (0)

(8e)

The corresponding formulae for the threshold updates are obtained by re-
placing V (j) by −1.

4. Generalised XOR function. The parity function can be viewed as a
generalisation of the XOR function to N > 2 input dimensions, because it
becomes the XOR function for N = 2. Another way to generalise the XOR
function to N > 2-dimensional inputs is to define a Boolean function that
gives unity if exactly one of its inputs equals unity. Otherwise the function
evaluates to zero. For N = 3, construct a network that represents this func-
tion. Then construct a network that does the trick for N = 4. In both cases,
explain (on max one A4 page for both) why/how your networks work (2p).

Solution: The input-space representation of the three-dimensional gener-
alised XOR function is shown in Figure 4(left). The problem is not linearly
separable. A network that solves this classification problem is shown on the
right of Figure 4(right). The generalised XOR function with four inputs is
represented in an analogous way.
An alternative is to use winning neurons. The construction outlined in Sec-
tion 7.1 in the course book requires 2N hidden neurons, so eight hidden
neurons for N = 3, whereas the network layout shown in Figure 4 has ten
hidden neurons. For N = 4, this approach requires 12 hidden neurons, while
the construction with winning neurons requires 16 hidden neurons.

5. Linearly inseparable problem. A classification problem is given in
Figure 5. Inputs x(µ) inside the gray region have targets t(µ) = 1, in-
puts outside the grey region have targets t(µ) = −1. The problem can
be solved by a perceptron with a hidden layer with four neurons V

(µ)
j =

sgn
(
−θj +

∑2
k=1wjkx

(µ)
k

)
, for j = 1, . . . , 4. The output is computed as

O(µ) = sgn
(
−Θ +

∑4
j=1WjV

(µ)
j

)
. Find the weights wjk, Wj, and thresholds

θj, Θ that solve the classification problem, assuming that all hidden weight
vectors point out of the gray region (2p).
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Figure 4: Input space and network layout for the three-dimensional exclusive
XOR problem. Question 4.

Figure 5: Classification problem for question 5.

Solution: We first compute the outward-pointing normal vectors to each
decision boundary. Denoting the point [−4,−2]T as A, ([1, 1]T as B, [2, 1]T

as C, and [2,−2]T as D, the normal vectors of the decision boundaries are

nAB = [−1, 1]T, nBC = [0, 1]T, nCD = [1, 0]T, nDA = [0,−1]T, (9)

This gives the following weight matrix for the hidden neurons:
−1 1
0 1
1 0
0, −1

 , (10)

To obtain the threshold values θi, we solve the equations wi1x1 +wi2x2−θi =
0, where x1 and x2 are coordinates on the decision boundary corresponding
to index i. This yields the thresholds

θ =


2
1
2
2

 . (11)

Now, by setting the weights leading from the hidden layer to the output to
unity,

W =


1
1
1
1

 , (12)
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the output equals -4 if the coordinate lies inside all decision boundaries. Oth-
erwise the output is larger or equal to -2. Hence we set the output threshold
Θ to a value between −4 and −2.

6. Non-linear transformation of a classification problem. Table 6
describes a classification problem. Show that this problem can be solved as
follows. Transform the inputs x to two-dimensional coordinates u1, u2 using
the functions:

u1 = exp(−1
4
|x−w1|2), with w1 = [-1,1,1]T , (13)

u2 = exp(−1
4
|x−w2|2), with w2 = [1,1,-1]T . (14)

Plot the positions of the eight input patterns in the u1-u2-plane. Hint: to
compute uj use the following approximations: exp(-1) ≈ 0.37, exp(-2) ≈
0.14, exp(-3) ≈ 0.05. The transformed data is used as input to a simple
perceptron O(µ) = sgn

(∑2
i=1Wjuj

(µ)−Θ
)
. Draw a decision boundary in the

u1-u2-plane and determine the corresponding weight vector W , as well as
the threshold Θ. (2p).

Solution: Figure 7 shows that the problem given in Figure 5 is not linearly
separable. Mapping input space as described in the problem, results in the
problem shown on the right of Figure 7. In the new coordinates, the problem
is linearly separable with W = [−1,−1]T and Θ = −1.

Figure 6: Classification problem for question 6.
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Figure 7: Left: input plane for question 6. Right: mapped problem in the u1-
u2-plane, weight vectorW ,and corresponding decision boundary for question
6.

Errata for ”Machine learning with neural networks” Bernhard Mehlig,
Cambridge University Press (2021)

p. 32 l. 11 ‘wii > 0’ should be replaced by ‘wii = 0’.

p. 32 l. 21 should read: ‘H = − 1
2

∑
ij wijg(bi)g(bj)−

∫ bi
0

dbbg′(b),

with bi =
∑
j wijnj − θi , cannot increase. . . ’.

p. 37 l. 16 replace ‘
√
N ’ by ‘N−1/2’.

l. 17 replace ‘〈bi(t)〉 ∼ N ’ by ‘〈bi(t)〉 = O(1)’.
p. 54 eq. (4.5c) replace ‘−βbm’ by ‘2βbm’.
p. 55 eq. (4.5d) replace ‘βbm’ by ‘−2βbm’.

p. 67 alg. 3 add superscripts ‘(µ) ’ to ‘δwmn, ‘δθ
(v)
n ’, and ‘δθ

(h)
n ’.

p. 72 l. 12 the list should read ‘1, 2, 4, and 8’.
p. 85 fig. 5.11 switch the labels ‘10’ and ‘50’.
p. 93 fig. 5.22 switch the labels ‘1111’ and ‘1101’ in the right panel.

p. 97 eq. (6.6a) insert ‘V
(µ)
n ’ before the ‘≡’ sign.

p. 106 l. 18 should read ‘a compromise, reducing the tendency of the
network to overfit at the expense of training accuracy’.

p. 117 fig. 7.5 the hidden neurons should be labeled ‘j = 0, 1, 2, 3’
from bottom to top.

p. 118 fig. 7.6 exchange labels ‘1’ and ‘2’.
eq. (7.9) should read ‘O1 = sgn(−V0 + V1 + V2 − V3)’.

p. 121 fig. 7.10 change ‘w(L−2)’ to ‘w(L)’.
p. 122 eq. (7.17) replace ‘J’ by ‘J′’, also in the two lines above the equation.

p. 123 eq. (7.19) should read ‘δ(`) = δ(L)JL−` with JL−` = [D(L)]−1J′L−`D(`)’.
p. 131 eq. (7.45) replace ‘Ol’ by ‘Oi’.
p. 139 l. 33 replace ‘the Lagrangian (7.57)’ by ‘ 12δw ·Mδw’.
p. 160 l. 15 delete ‘then Lij = δij . In this case’.
p. 161 l. 19 replace ‘negative real parts’ by ‘positive real parts’, and ‘positive’ by ‘negative’

in the next line.
p. 171 l. 23 the upper limit of the second summation should be ‘M ’.
p. 197 alg. 10 replace ‘sj = 0’ by ‘sj = 1’ in line 2 of Algorithm 10.
p. 202 l. 37 replace ‘positive’ by ‘non-negative’.
p. 203 l. 21 should read ‘Alternatively, assume that w∗ = u+ iv can be written as an analytic

function of r = r1 + ir2. . . ’.
l. 27 add ‘See Ref. [2]’.

p. 225 l. 5,6 replace ‘two’ by ‘two (three)’ and ‘lost’ by ‘lost (drew)’.

Gothenburg, October 18 (2022).
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