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1. One-step error probability. In this question, consider a deterministic
Hopfield network with weights given by

wij =
1

N

p∑
µ=1

x
(µ)
i x

(µ)
j , (1)

where the diagonal entries are non-zero, and the patterns x(µ) are random
bits such that

Prob(x
(µ)
i = ±1) =

1

2
. (2)

The local field is given by

bi =
N∑
j=1

wijsj. (3)

Feeding an arbitrary stored pattern x(ν) to the network (i.e. by setting

sj = x
(ν)
j ), and updating a single bit, what is the probability of the bit

changing sign? This probability is explored in the following subquestions.
(a) Derive the cross-talk term C

(ν)
i , defined such that an error occurs when

C
(ν)
i > 1. Start from bi =

∑N
j=1 wijx

(ν)
j (0.5p).
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Answer: When we use Hebb’s rule (2.25), the local field is obtained as

b
(ν)
i = x

(ν)
i + 1

N

∑N
j=1

∑
µ ̸=ν x

(µ)
i x

(µ)
j x

(ν)
j , instead of Equation (2.28). This

implies a slightly different definition of the cross-talk term. Equation (2.33)
is replaced by:

C
(ν)
i = −x

(ν)
i

1

N

N∑
j=1

∑
µ̸=ν

x
(µ)
i x

(µ)
j x

(ν)
j . (4)

(b) Assuming N and p large, compute the mean value of C
(ν)
i (1p).

Answer: Average over the independent patterns, using that ⟨x(ν)
i x

(µ)
i x

(µ)
j x

(ν)
j ⟩ =

0 when i ̸= j and µ ̸= ν, because the average factorises in this case, and
⟨x(µ)

k ⟩ = 0. When i = j, there are p−1 terms that average to ⟨[x(ν)
j ]2[x

(µ)
j ]2⟩ =

1. Thus, we conclude that ⟨C(ν)
i ⟩ = −(p− 1)/N ≈ −p/N for large p.

(c) Using the central-limit theorem, one can show that the distribution of

C
(ν)
i is

P (C
(ν)
i ) = (2πσ2

C)
−1/2 exp

[
−(C

(ν)
i − ⟨C(ν)

i ⟩)2/(2σ2
C)
]
, (5)

where ⟨C(ν)
i ⟩ is the mean value computed in the previous subquestion, and

σ2
C is the variance of the distribution of C

(ν)
i . Using the result from (b),

describe what happens to the one-step error probability in the limit where
p ≫ N . (0.5p).
Answer: Due to the central limit theorem, the distribution of C is a shifted
Gaussian, P (C) = (2πσC)

1/2 exp[−(C−⟨C⟩)2/(2σ2
C)], instead of Equation (2.36).

For small α = p/N , the mean tends to zero, so that the new distribution ap-
proaches Equation (2.36). For large values of α, the mean ⟨C⟩ dominates
the error probability. In the limit α → ∞, the mean of the weight matrix,
⟨W⟩ = p

N
I, dominates the network dynamics. The one-step error probability

tends to zero in this limit because all states are reproduced, but the network
cannot learn anything meaningful.

2. Linearly inseparable problem. A classification problem is given in Fig-
ure 1. Inputs x(µ) inside the grey region have targets tµ = 1, inputs outside
the grey region have targets tµ = −1. The problem can be solved by a percep-

tron with a hidden layer with four neurons V
(µ)
j = sgn

(
−θj +

∑2
k=1wjkx

(µ)
k

)
,

for j = 1, . . . , 4. The output is computed asO(µ) = sgn
(
−Θ+

∑4
j=1 WjV

(µ)
j

)
.

Find the weights wjk, Wj, and thresholds θj, Θ that solve the classification
problem (2p).

Answer: We set the rows in the 4×2 weight matrixW(1) leading from the in-
put layer to the hidden layer to be normal vectors to the decision boundaries
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Figure 1: Classification problem for question 2.

pointing towards the origin:

W(1) =


−1 0
0 1
−1

3
−1

1
3

−1
4

 . (6)

Using that the decision boundary is parametrized by w
(1)
i1 x1 + w

(1)
i2 x2 = θ

(1)
i ,

we pick a point on the i:th decision boundary to find the threshold. This
gives θ

(1)
1 = −2, θ

(1)
2 = −2, θ

(1)
3 = −5

3
, θ

(1)
4 = −5

6
. Setting all elements in

the 1× 4 weight matrix W(2) connecting the hidden layer to the output layer
to 1, we know that the sum

∑4
i=1w

(2)
i Vi, where Vi is the output from the

i:th hidden neuron, will only take its maximal value of 4 when the input
coordinate is inside the grey region. Otherwise, it will be less than or equal
to 2. Thus, we pick the threshold θ(2) to be a value between 2 and 4, say 3.

3. Backpropagation. Derive the update rules for the weights and thresh-
olds of a one-layer perceptron with two input neurons, M hidden neurons,
and three output neurons. The activation function g(b) is used for all neu-
rons. The outputs from the input layer, hidden layers, and output layers,
are denoted xk, Vj, and Oi respectively. The weights leading from the input
layer to the hidden layer are denoted wjk and the weights leading from the
hidden layer to the output layer are denoted Wij. The thresholds for the
hidden and output layer are denoted θi and Θi respectively. Consider the en-
ergy function H =

∑p
µ=1 E(t(µ),O(µ)), where E(t(µ),O(µ)) is a differentiable

scalar function that depends on the targets t(µ) and outputs O(µ), and which
reaches its minimum when t(µ) = O(µ). (2p).

Answer: We start by deriving the update rules for the output weights. The
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update rule is

W ′
mn = Wmn + δWmn, δWmn = −η

∂H

∂Wmn

. (7)

Performing the differentiation, we have

∂H

∂Wmn

=

p∑
µ=1

∂E(t(µ),O(µ))

∂Wmn

=

p∑
µ=1

3∑
i=1

dE

dO
(µ)
i

g′(B
(µ)
i )

M∑
j=1

∂Wij

∂Wmn

V
(µ)
j (8)

where B
(µ)
i is the local field of the i:th output neuron. Using that

∂Wij

∂mn
=

δimδjn, we obtain

∂H

∂Wmn

=

p∑
µ=1

dE

dO
(µ)
m

g′(B(µ)
m )V (µ)

n =

p∑
µ=1

∆(µ)
m V (µ)

n (9)

where ∆
(µ)
m = dE

dO
(µ)
m

g′(B
(µ)
m ). Hence, the update rule for the output weights is

δWmn = −η

p∑
µ=1

∆(µ)
m V (µ)

n . (10)

Similarly, the update rule for the output thresholds is calculated to be

δΘm = η

p∑
µ=1

∆(µ)
m . (11)

The update rule for the weights leading from the input to the hidden layer
is given by

w′
mn = wmn + δwmn, δwmn = −η

∂H

∂wmn

. (12)

Performing the derivative, we obtain

∂H

∂wmn

=

p∑
µ=1

3∑
i=1

∆
(µ)
i

M∑
j=1

Wij

∂V
(µ)
j

∂wmn

=

p∑
µ=1

3∑
i=1

∆
(µ)
i

M∑
j=1

Wijg
′(b

(µ)
j )

2∑
k=1

∂wjk

∂wmn

x
(µ)
k

(13)
which simplifies to

∂H

∂wmn

=

p∑
µ=1

3∑
i=1

∆
(µ)
i Wimg

′(b(µ)m )x(µ)
n =

p∑
µ=1

δ(µ)m x(µ)
n (14)

where δ
(µ)
m =

∑3
i=1∆

(µ)
i Wimg

′(b
(µ)
m ). Thus, the update rule for the input

weights is

δwmn = −η

p∑
µ=1

δ(µ)m x(µ)
n . (15)
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The update rule for the hidden thresholds take a similar form:

δθm = η

p∑
µ=1

δ(µ)m . (16)

4. Convolutional network. The two patterns shown in Figure 2(a) are
processed by a simple convolutional neural network that has one convolution
layer with one single 3×3 kernel with ReLU units, zero threshold, and weights
as given in Figure 2(b). Stride (1, 1). The resulting feature map is fed into a
3× 3 max-pooling layer with stride (1, 1). Finally, there is a fully connected
classification layer with two output units with Heaviside activation functions.
(a) For both patterns determine the resulting feature map and the output of
the max-pooling layer (1p).
Answer: The feature map for patterns (a) and (b) are

(a) :


1 3 1
3 4 3
2 7 2
2 6 2
1 4 1

 , (b) :


2 4 1
3 4 3
2 6 1
3 4 3
2 4 1


and the outputs of the max-pooling layers are

(a) :

77
7

 , (b) :

66
6


(b) Determine weights and thresholds of the classification layer that allow to
classify the two patterns into different classes (1p).
Answer: By picking output weights as W = [1, 1, 1], the outputs for pat-
terns (a) and (b) will be 21 and 18 respectively. Thus, it suffices to choose
a threshold between 21 and 18 to successfully classify the different patterns,
say θ = 20.

5. Oja’s rule. The aim of unsupervised learning is to construct a net-
work that learns the properties of a distribution P (x) of input patterns
x = (x1, . . . , xN)

⊤. Consider a network with one linear output function
y =

∑N
j=1wjxj. Under Oja’s learning rule δwi = ηy(xi − ywi) the weight

vector w converges to a steady state w∗ with components w∗
j .

(a) Show that the steady state w∗ is an eigenvector of the matrix C′ with
elements C ′

ij = ⟨xixj⟩. Here ⟨. . . ⟩ denotes the average over P (x) (1p).
(a) Show that the steady state w∗ is an eigenvector of the matrix C′ with
elements C ′

ij = ⟨xixj⟩. Here ⟨. . . ⟩ denotes the average over P (x). (1p).

5



Figure 2: Patterns for question 4.

Answer: We start with the given learning rule written in vector notation:

δw = ηy(x− yw)

= η(xy − y2w)

= η[xx⊤w − (w⊤xx⊤w)w]

where in the last line we have used y = w⊤x = x⊤w, which yields y2 = yy =
w⊤xx⊤w. Now, by averaging δw over the data distribution, we get

⟨δw⟩ = η[⟨xx⊤⟩w − (w⊤⟨xx⊤⟩w)w]. (17)

Let C′ = ⟨xx⊤⟩. Then, using the above equation, we have

⟨δw⟩ = η[C′w − (w⊤C′w)w]. (18)

Now assume that w = w∗ is the normalized maximal eigenvector of the
matrix C′; that is, C′w∗ = λ1w

∗ where (w∗)⊤w = 1 and λ1 is the maximal
eigenvalue. Then

⟨δw⟩ = η[C′w∗ − ((w∗)⊤C′w∗)w∗]

= η[λ1w
∗ − λ1((w

∗)⊤w∗)w∗]

= η[λ1w
∗ − λ1w

∗]

= 0

which proves that the eigenvector w∗ is a steady state of the learning dy-
namics.
(b) Show that the matrix C′ has non-negative eigenvalues (1p).
Answer: Given an eigenvector v of C′ we have

v⊤C′v = v⊤⟨xx⊤⟩v = λv⊤v. (19)

This can be rewritten as

⟨v⊤xx⊤v⟩ = ⟨(v⊤x)2⟩ = λ||v||2. (20)
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Table 1: Three-point probabilities for the data set shown in Figure 3(a,b).

x1 x2 x3 P (x1, x2, x3)
1 1 1 4

14

1 1 −1 1
14

1 −1 1 1
14

−1 1 1 1
14

1 −1 −1 1
14

−1 1 −1 1
14

−1 −1 1 1
14

−1 −1 −1 4
14

Hence, the eigenvalues are given by

λ =
⟨(v⊤x)2⟩
||v||2

≥ 0. (21)

6. Restricted Boltzmann machine. Demonstrate that a Boltzmann ma-
chine requires hidden units to learn the 3× 3 data set shown in Figure 3(a).
Evaluate all eight three-point probabilities P (x1=±1, x2=±1, x3=±1) for
x1, x2, and x3 as shown in panel (b). Here xj = +1 represents■, and xj = −1
stands for □. Check whether these three-point probabilities factorise. For
example, does P (x1=1, x2=1, x3=−1) = P (x1=1, x2=1)P (x3=−1) hold,
or not? Use your results to explain why a Boltzmann machine needs hidden
units to learn the data set (a). Now consider the data set in Figure 3(c),
only stripes. Explain why no hidden units are needed for (c) (2p).
Answer: The eight three-point probabilities P (x1=1, x2=1, x3=−1) for the
data set are listed in Table 1. Since P (x1=1, x2=1) = 5

14
and P (x3=−1) =

7
14
, we see that P (x1 = 1, x2 = 1, x3 = −1) ̸= P (x1 = 1, x2 = 1)P (x3 = −1),

this three-point probability does not factorise. This means that a Boltzmann
machine requires hidden units to represent the data set (a). For the data
set (c), by contrast, the three-point probabilities do factorise. For example,
P (x1 =1, x2 =1, x3 =−1) = 1

8
, P (x1 =1, x2 =1) = 1

4
, and P (x3 =−1) = 1

2
.

Since the three-point correlations can be expressed in terms of two-point
correlations, no hidden units are needed to represent this data set with a
Boltzmann machine.
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Figure 3: (a) 3×3 bars-and-stripes data set. The shown patterns occur with
probability Pdata =

1
14
, all other patterns have Pdata = 0. (b) Definition of the

bits x1, x2, and x3. (c) Data set with stripes only. The shown patterns occur
with probability Pdata =

1
8
, all other patterns have Pdata = 0. Question 6.
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Errata for ”Machine learning with neural networks” Bernhard Mehlig,
Cambridge University Press (2021)

p. 32 l. 11 ‘wii > 0’ should be replaced by ‘wii = 0’.

p. 32 l. 21 should read: ‘H = − 1
2

∑
ij wijg(bi)g(bj)−

∫ bi
0
dbbg′(b),

with bi =
∑

j wijnj − θi , cannot increase. . . ’.

p. 37 l. 16 replace ‘
√
N ’ by ‘N−1/2’.

l. 17 replace ‘⟨bi(t)⟩ ∼ N ’ by ‘⟨bi(t)⟩ = O(1)’.
p. 54 eq. (4.5c) replace ‘−βbm’ by ‘2βbm’.
p. 55 eq. (4.5d) replace ‘βbm’ by ‘−2βbm’.

p. 67 alg. 3 add superscripts ‘(µ) ’ to ‘δwmn, ‘δθ
(v)
n ’, and ‘δθ

(h)
n ’.

p. 72 l. 12 the list should read ‘1, 2, 4, and 8’.
p. 85 fig. 5.11 switch the labels ‘10’ and ‘50’.
p. 93 fig. 5.22 switch the labels ‘1111’ and ‘1101’ in the right panel.

p. 97 eq. (6.6a) insert ‘V
(µ)
n ’ before the ‘≡’ sign.

p. 106 l. 18 should read ‘a compromise, reducing the tendency of the
network to overfit at the expense of training accuracy’.

p. 117 fig. 7.5 the hidden neurons should be labeled ‘j = 0, 1, 2, 3’
from bottom to top.

p. 118 fig. 7.6 exchange labels ‘1’ and ‘2’.
eq. (7.9) should read ‘O1 = sgn(−V0 + V1 + V2 − V3)’.

p. 121 fig. 7.10 change ‘w(L−2)’ to ‘w(L)’.
p. 122 eq. (7.17) replace ‘J’ by ‘J′’, also in the two lines above the equation.

p. 123 eq. (7.19) should read ‘δ(ℓ) = δ(L)JL−ℓ with JL−ℓ = [D(L)]−1J′L−ℓD(ℓ)’.
p. 131 eq. (7.45) replace ‘Ol’ by ‘Oi’.
p. 139 l. 33 replace ‘the Lagrangian (7.57)’ by ‘ 12δw ·Mδw’.
p. 160 l. 15 delete ‘then Lij = δij . In this case’.
p. 161 l. 19 replace ‘negative real parts’ by ‘positive real parts’, and ‘positive’ by ‘negative’

in the next line.
p. 171 l. 23 the upper limit of the second summation should be ‘M ’.
p. 197 alg. 10 replace ‘sj = 0’ by ‘sj = 1’ in line 2 of Algorithm 10.
p. 202 l. 37 replace ‘positive’ by ‘non-negative’.
p. 203 l. 21 should read ‘Alternatively, assume that w∗ = u+ iv can be written as an analytic

function of r = r1 + ir2. . . ’.
l. 27 add ‘See Ref. [2]’.

p. 225 l. 5,6 replace ‘two’ by ‘two (three)’ and ‘lost’ by ‘lost (drew)’.

Gothenburg, October 18 (2022).
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