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1. Hopfield model with time-continuous dynamics. Consider a Hop-
field net with continuous-time dynamics:

τ d
dt
ni = −ni + g(

∑
j

wijnj − θi)

with g(b) = (1 + e−b)−1 and time scale τ . Show that the energy function

E = −1
2

∑
ij

wijninj +
∑
i

θini +
∑
i

∫ ni

0

dn g−1(n)

cannot increase under the network dynamics if the weights are symmetric.
Here g−1 is the inverse function of g, so that g−1

(
g(b)

)
= b. Hint: use the

fact that g(b) is a monotonically increasing function of b. (2p).

Solution: We want to show that d
dt
E ≤ 0. Differentiating E w.r.t time t

yields

dE

dt
= −

∑
ij

wij
dbi
dt
g′(bi)g(bj) +

∑
i

θi
dbi
dt
g′(bi) +

∑
i

dbi
dt
big
′(bi) (1)

=
∑
i

dbi
dt
g′(bi)

[
−
∑
j

wijg(bj) + θi + bi

]
, (2)
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where we used wij = wji in the first step. The equation of motion of bi reads

τ
dbi
dt

= τ
∑
j

wij
dni
dt

= −bi − θi +
∑
j

wijg(bj) . (3)

Combining Equations (1) and (3) yields

dE

dt
= −1

τ

∑
i

g′(bi)
[
bi + θi −

∑
j

wijg(bj)
]2
. (4)

This expression cannot be positive because g′(b) > 0, and this means that lo-
cal minima of E are attractors. The steady states n∗ of the dynamics satisfy
n∗i = g(b∗i ), b

∗
i =

∑
j wijn

∗
i − θi, and dE∗/dt = 0. But note that they need

not be attractors. Consider an example: w11 = w22 = 0, w12 = w21 = 10,
and θ1 = θ2 = −5. The steady state n∗ = [1

2
, 1
2
]T is a saddle point. See

Exercise 9.2 and Equation (9.18a) in the course book.

2. Three-point probabilities in 3 × 3 bars-and-stripes data set.
Demonstrate that a Boltzmann machine requires hidden units to learn the
3 × 3 data set shown in Figure 1(a). To this end, evaluate all three-point
probabilities P (x1 = ±1, x2 = ±1, x3 = ±1) as shown in panel (b). Here
xj = +1 represents �, and xj = −1 stands for �. Check whether these
three-point probabilities factorise. For example, does

P (x1 =1, x2 =1, x3 =−1) 6= P (x1 =1, x2 =1)P (x3 =−1)

hold or not? Use your results to explain why a Boltzmann machine needs
hidden units to learn the data set (a). Now consider the data set in Fig-
ure 1(c), only stripes. Explain why no hidden units are needed for (c). (2p).

Solution: The eight three-point probabilities P (x1 =±1, x2 =±1, x3 =±1)
for the data set are listed in Table 1. Since P (x1 = 1, x2 = 1) = 5

14
and

P (x3 = −1) = 7
14

, we see that P (x1 = 1, x2 = 1, x3 = −1) 6= P (x1 = 1, x2 =
1)P (x3 =−1). This three-point probability does not factorise. More gener-
ally, Table 1 shows that the three-point probability P (x1, x2, x3) does not fac-
torise as P (x1, x2)P (x3) if x1 and x2 have the same colour, because in this case
one cannot say from x1 and x2 alone whether a pattern should be classified as
bars or stripes. As a consequence, a Boltzmann machine requires hidden units
to represent the data set (a). For the data set (c), by contrast, the three-
point probabilities do factorise. For example, P (x1 =1, x2 =1, x3 =−1) = 1

8
,

P (x1 = 1, x2 = 1) = 1
4
, and P (x3 =−1) = 1

2
. Since the three-point correla-

tions can be expressed in terms of two-point correlations, no hidden units
are needed to represent this data set with a Boltzmann machine.
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Figure 1: (a) 3×3 bars-and-stripes data set. The shown patterns occur with
probability Pdata = 1

14
, all other patterns have Pdata = 0. (b) Definition of

the bits x1, x2, and x3. (c) Data set with stripes only. The shown patterns
occur with probability Pdata = 1

8
, all other patterns have Pdata = 0.

Table 1: Three-point probabilities for the data set shown in Figure 1. Ques-
tion 2.

x1 x2 x3 P (x1, x2, x3) P (x1, x2) P (x3)
−1 −1 −1 4

14
5
14

1
2

1 −1 −1 1
14

2
14

1
2

−1 1 −1 1
14

2
14

1
2

−1 −1 1 1
14

5
14

1
2

1 1 −1 1
14

5
14

1
2

−1 1 1 1
14

2
14

1
2

1 −1 1 1
14

2
14

1
2

1 1 1 4
14

5
14

1
2
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Figure 2: Linearly inseparable classification problem, Question 3.

3. Linearly inseparable problem. A classification problem is given in
Figure 2. Inputs x(µ) inside the gray triangle have targets t(µ) = 1, in-
puts outside the triangle have targets is t(µ) = 0. The problem can be
solved by a perceptron with one hidden layer with three neurons V

(µ)
j =

θH

(
−θj +

∑2
k=1wjkx

(µ)
k

)
, for j = 1, 2, 3. The network output is computed

as O(µ) = θH

(
−Θ +

∑3
j=1WjV

(µ)
j

)
. Here θH(b) is the Heaviside function:

θH(b) =

{
1 if b > 0

0 otherwise

Find weights wjk, Wj and thresholds θj, Θ that solve the classification prob-
lem (2p).

Solution: To find parameters that solve this classification problem, we first
compute the outward-pointing normal vectors to each decision boundary
(Figure 2). Denoting the point [−4, 3] by A, the point [3, 0] by B, and the
point [−2,−2] by C, the normal vectors of the decision boundaries are

nAB =

[
1/7
1/3

]
, nBC =

[
1/5
−1/2 ,

]
, nCD =

[
−1/2
−1/2

]
. (5)

Setting these as our weights, we obtain the weight matrix

W =

 1/7 1/3
1/5 −1/2
−1/2 −1/5

 . (6)

To find the thresholds θi, we need to solve

bi = wi1x1 + wi2x2 − θi = 0 (7)

for i = 1, . . . , 3, where x1 and x2 are coordinates on the decision boundary
corresponding to index i. This equation holds because the local field bi
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changes sign at the decision boundary. We find the threshold vector

θ =

3/7
3/5
7/5

 . (8)

Now consider the output weights. If we choose

W =

1
1
1

 , (9)

a point x in the shaded region delineated by the decision boundaries gives
-3, otherwise the output equals -1. Hence, if we set the output threshold Θ
to a value between -3 and -1, the output is 1 outside the shaded region and
-1 inside the shaded region.

4. Convolutional neural network. The two patterns shown in Figure 3
are processed by a very simple convolutional network that has one convolu-
tion layer with one single 2 × 2 kernel with ReLU neurons, zero threshold,
and stride (1,1). The resulting feature map is fed into a 3 × 3 max-pooling
layer with stride (1,1). Finally there is a fully connected classification layer
with one output neuron with the Heaviside activation function. Determine
weights of the kernel and weights and thresholds of the classification layer
that allow to classify the two patterns into different classes (2p).

Solution: Applying the kernel to the patterns shown in Figure 3 yields1 1 1
1 1 1
1 1 1

 and

0 2 0
0 2 0
0 2 0

 . (10)

Max pooling gives 1 for the left pattern, and 2 for the right pattern. Possible
choice of weights for the output neuron: W1 = W2 = 2 and Θ = 1.5.

Figure 3: Patterns to be classified by convolutional network. Black squares
= 1, white squares = 0. Question 4.
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5. Lyapunov exponent in deep neural networks. The error in a multi-
layer perceptron propagates backwards according to the rule:

δ
(l−1)
i =

N∑
j

δ
(l)
j w

(l)
ji g
′(b

(l−1)
i ) . (11)

Here g′ = dg/db is the derivative of the activation function. Assume that the
network is trained on random input patterns with independent bits. Further
assume that the weights are random, Gaussian distributed with mean zero
and variance 〈wijwkl〉 = σ2

wδikδjl, and that the thresholds are set to zero.
Here δik is the Kronecker delta, don’t confuse it with the error!

(a) Compute the mean of the error δ
(l−1)
i in the limit N → ∞ neglecting

any correlations between local fields, weights, or errors (0.5p).

(b) Show that the variance of the error in the limit N → ∞ obeys the
recursion

〈(δ(l−1)i )2〉 = Nσ2
w〈(δ

(l)
j )2〉〈[g′(b(l−1)i )]2〉 ,

under the same assumptions as in task (a) (0.5p).

(c) It can be shown that the distribution of the local fields b
(l)
j converges

to a Gaussian with zero mean and a fixed variance σ2
f , for large N and many

layers. Assuming that the distribution has this form, derive an approxima-
tion for the maximal Lyapunov exponent. It is defined as

λ1 = log
∣∣δ(l−1)/δ(l)∣∣.

Explain why σ2
w should be chosen to be on the order N−1 for the network

to learn well. Hint: write 〈[g′(b(l−1)i )]2〉 as an integral expression, you do not
need to evaluate the integral. (1p).

Solution: (a) We have 〈δ(l−1)i 〉 =
∑N

j 〈δ
(l)
j w

(l)
ji g
′(b

(l−1)
i )〉. Neglecting correla-

tions between local fields, weights, and errors, 〈δ(l−1)i 〉 =
∑N

j 〈δ
(l)
j 〉〈w

(l)
ji 〉〈g′(b

(l−1)
i )〉,

we see that 〈δ(l)i 〉 = 0 for l < L (where L denotes the output layer).

(b) To derive the required expression, we square Eq. (11) and average. This
gives

〈(δ(l−1)i )2〉 = 〈
∑
j,k

δ
(l)
j δ

(l)
k w

(l)
ji w

(l)
ki g
′(b

(l−1)
i )g′(b

(l−1)
i )〉

≈
∑
j,k

〈δ(l)j δ
(l)
k 〉〈w

(l)
ji w

(l)
ki 〉〈[g

′(b
(l−1)
i )]2〉 .

Using that 〈w(l)
ji w

(l)
ki 〉 = σ2

wδjk, we find:

〈(δ(l−1)i )2〉 ≈ Nσ2
w〈(δ

(l)
j )2〉〈[g′(b(l−1)i )]2〉 .
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(c) We write

〈[g′(b(l−1)i )]2〉 =

∫
dzP (z)[g′(z)]2 ,

where P (z) is a Gaussian distribution with zero mean and variance σ2
f . De-

noting the value of the above integral by F , we find

λ1 = logNσ2
wF .

In order to avoid exploding or vanishing gradients, we should have λ1 ≈ 0.
This is achieved by initialising the weights as σ2

w ∝ N−1. The precise con-
stant of proportionality depends on the numerical value of F .

6. Backpropagation. To train a multi-layer perceptron by gradient de-
scent one needs update formulae for weights and thresholds. Derive these up-
date formulae for sequential training using backpropagation for the netweork
shown in Fig. 4. The weights for the hidden layer are denoted by wjk, and
those for the output layer by W1j. The corresponding thresholds are denoted
by θj and Θ1, and the activation function by g(. . . ). The target values for

input patterns x(µ) is t
(µ)
1 , and the pattern index µ ranges from 1 to p. The

energy function is H = 1
2

∑p
µ=1(t

(µ)
1 −O

(µ)
1 )2 (2p).

Figure 4: Multi-layer perceptron with three input terminals, one hidden
layer, and one output. Question 6.

Solution: See course book.
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