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1. Feature map. The two patterns ) and x® shown in Figure 1(a) are
processed by a very simple convolutional network that has one convolution
layer with one single 4x4 kernel with ReLLU units, zero threshold, weights
w;; as given in Figure 1(b), and stride (1,1). The resulting feature map is
fed into a 2x2 max-pooling layer with stride (1,1). Finally there is a fully
connected output layer with one output unit O™ with Heaviside activation
function. For both patterns determine the resulting feature map and the
output of the max-pooling layer. Determine weights W) and a threshold ©
so that the network output is O = 0 for input pattern ", and O® = 1
for input pattern ®.
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Figure 1: (a) Input patterns 2" and x® with £1 bits (O corresponds to
x;=-1 and W to x;=1). (b) Weights w;; of a 4x4 kernel of a feature map.
The weights are either -1 or 1 (O corresponds to w;; = —1 and B to w;; = 1).
(Question 1).

Solution: Input to feature map of pattern ™):

8 6
-2 —6
6 —2|" (1)
6 8

See Fig. 2 for an illustration of how to arrive at these numbers. Input to
feature map of pattern x(®:

—2 -2
0 0
R (2)
0 0
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Figure 2: Illustrates calculation of input to feature map for the pattern S,
Eq. (1), Question 1.

Feature map of pattern x):

8 6
00
00 (3)
Feature map of pattern x?):
0 01
00
Max-pooling layer of pattern a(:
o
0 (5)
_8_
Max-pooling layer of pattern a(%):
o
0 (6)
_O_
With W), = —6;; and © = —4 we have
3 8
Y Wi 0] —0=-4 (7)
k=1 8



and

3 0
Y Wi 0] —e=4 (8)
0

k=1 k

Applying the Heaviside activation function results in the requested outputs.
2. Hopfield network with hidden units A Hopfield network with hidden
neurons can be used to learn a distribution of input patterns. Consider a
Hopfield network with IV visible neurons v; and M hidden neurons h;. The

neurons are binary, with values —1 or +1. The network learns by updating
the visible neurons according to

M
v; < sgn [by))} with b§v) = Z hiw;j, (9)
i=1
and by updating the hidden neurons according to
N
h; < sgn [bgh)} with bgh) = Z Wi V;. (10)
j=1

In Equations (9) and (10), w;; are the elements of a M x N weight matrix.
Furthermore, sgn[b] is the signum function, sgn[b] = —1 if b < 0 and +1
otherwise. Show that the energy function

M N
H = —ZZwijhivj (11)

i=1 j=1

can not increase upon updating one of the hidden neurons according to equa-
tion (10).

Solution: Denote the the value of hidden neuron i after the update by h.
Suppose that the £ hidden neuron changes sign. In this case:

hi = h; — 2h;0;, (12)



The energy after the update is

M N
Hl = — Z Zwijh;Uj

i;1 j:11\4
= — Z V; Z w,-j(hi - thézk>
];[1 ];[1
Y "
= — Z V; Z wmhz -2 Z wz]hzdzk]
j=1  Li=1 i=1

N

M
= — Z Uj Z w,]hl — kajhk]
o .
= — Z Z wz-jhivj + 2hk Z W5V
j=1

j=1 i=1

—H + 2hi b

If the k" hidden neuron changes sign, then hkb;h) < 0.
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Figure 3: Network for Question 3.

3. Backpropagation
Assuming the energy function

1 (1) (1)\2
H = QZ(% -0"), (13)
LMK

derive the update rule for the weights wgf) for L = 1,2 and 3 for the network
shown in Figure 3.
Solution: see course book.



4. XOR function. The Boolean XOR function takes two binary inputs.
For the inputs [—1, —1] and [1, 1] the function evaluates to —1, for the other
two inputs it evaluates to +1. Encode the XOR function as weights w;; in a
Hopfield net with three neurons by storing the patterns z*) = [~1, -1, —1],
z? =[1,1,-1], 2® = [-1,1,1], and £ = [1, —1, 1] using Hebb’s rule:

4
1
wij = §Zx§“)$§m where 4,7 =1,...,3. (14)
pn=1
The update rule for bit .S; is

3
Si <— sgn [Z wiij] s (15)

J=1

where sgn[b] is the signum function, sgn[b] = —1 if b < 0 and +1 otherwise.
Feed the stored patterns to the net, and test whether they are stable under
synchronous updating. Conclude with one or two sentences whether the net-
work is useful for recognising the XOR function.

Solution:

1 1 -1 1 -1 -1 1 -1 1
+{1 1 -1+ ]-1 1 11+]1-1 1 -1
-1 -1 1 -1 1 1 1 -1 1

3W =

(16)

OB O = =
= O O = =

The weight matrix is proportional to the identity matrix. Therefore the
network reproduces all input patterns, it cannot single out the four patterns
corresponding to the XOR function.



5. Gradient descent and momentum
Consider the given energy function H as a function of weight w as shown in
Fig. 4. Use the following gradient descent update rule,

MWy = —77—/5 + a dw,. (17)

Assume that the system is initially at point A, and that ns = 1/2. The slope
of the segment AB in Fig. 4 is —s and the slope of the segment BC' is 0.
The system starts at time step 1, and assume that dwy = 0.

1. Find the number of time steps required to travel from point A to point
B for a = 0.

2. Repeat the previous calculation for the case a = 1/2, and graphically
find the solution of the final equation you obtain.

3. Indicate the results of the previous two parts on the same graph. Which
of the two cases: & = 0 and o = 1/2 converges faster?

4. What is the fate of the two systems a = 0 and o = 1/2 once they cross
point B?
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Figure 4: Emergy as a function of weight for problem: Gradient descent and
momentum.

Solution: We calculate the total change in weight at time step n, Aw, =
Yo dw;, eqxuate Aw,, to L and solve for n. Proceed by solving for dw,.
Iterating the equation for the weight updates we find,

T— Z nsal + o swy, (18)
=0
1 — aiJrl
=ns ——— 19
s ——= (19)



Next compute Aw,,

Aw,, = Zéwi, (20)

-3 2
1 (n—all_ O‘n). (22)

Thus using ns = 1/2 we obtain, for « = 0, Aw,(a = 0) = n/2, and for
a=1/2, Aw,(a=1/2) =n—142"". Equating Aw = L we obtain,

Na=0 = 2L, (23)
Na=1/2 — 1+ 27 Ma=1/2 = [, (24)

Plotting these relations, we see that n,—;/2 < na—o, thus, a =1 /2 converges
faster.

Na=1/2 p,

Figure 5: Graphical solution of problem : gradient descent and momentum.

After crossing point B, dw(a = 0) = 0. The weights cease to change. On the
other hand, dw,—1/2 > 0. The weights keep changing.

6. Linear activation function Consider using a linear activation function
g(b) = b in a fully connected simple perceptron with one output unit. Fed
with a training pattern =, the output O™ is given by

OW = wTz®W —¢. (25)

Here w is a column vector of weights, and 6 is a scalar threshold. There are
p training patterns, g = 1,...,p. Their target outputs are denoted by .
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For the perceptron concidered, the energy function

1 P
Z Z ¢ #) (26)
pn=1

has only one minimum, and it can be found analytically. In the following,
you will derive the threshold 6 at the minimum.

[\

a) Start by showing that the minimum implies

Gw=a+60p (27a)
Blw =0+~ (27b)

with
G=(zz"), a=(z), B=(x) and v=(t), (28)

where (...) denotes an average over the training patterns.

b) Assume that G is invertible, with inverse G™'. Furthermore, assume that
BTGB # 1 and solve eqs. (27) for 6.

c¢) If, in a fully connected multi-layer perceptron, one uses a linear activation
function ¢(b) = b, it holds that

V0 — Oy wt-1) _ g®
= [wOw D] VEi-2) _ [wmg(é—l) Lo0] (29)

Here, Vb i the p neuron in the /** hidden layer. Furthermore, w® and
0“) are the weight matrix and theshold vector for the neurons in the ¢ hid-
den layer. Write at most three sentences where you, based on eq. (29), argue
that a non-linear activation function is essential for a multi-layer perceptron.



Solution: a)

OH d 1< 2
= Z () _ 4(p)
8ug 8wi2222(6) tu)
b 0w
— ((DE_—
;(O )

P
=37 (00 — ¢
pn=1
P N
=2 (Z w6 - t(“)> z
p=1 \j=1
P N » »
— Z (Z wjx§“)> xl(u) i Z (—6) x@(u) i Z (—t(“)
pn=1

pn=1 j 1 p=1
= Z ijm x i@x it(“)xﬁ,“)
p=1 j=1 pn=1
N p p
:Zzwﬁ x gzx Zt(u) (w)
J;l p=1 , _
:ijzx(“x HZ;L« Zt(u (1)
7=1 pn=1 pn=1

N
= Z w;pGji — OpB; — pa; = p (Z Gijw; — 08, — ozl->
j=1 =1

oH
8uq

=0=>Gw=a+603



pn=1
P O
— (1) _ 4(p)
; (O —¢m) 5
P
_ Z (O(u) t(“)) 2
pn=1
p N
= Z (Z wj:rgu) —0— t(“)> (—1)
p=1 \j=1
4 N 4 4
-3 (Sme) - S0
p=1 \j=1 pn=1 pn=1
p N P 4
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N D
:—ijng”)%—pé’%—pv
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N

OH .

b) The first equation gives:
w=G"a+0G'3.
Insert into the second, and use that w'8 = BT w:

BT [Gla+0G'B] =0+~
=BG la+08'G '8 =0+~
=0[B'G'B-1]=7-B"G'a
_ aTr—1
N el
BGIB-1

¢) The equation can be written as

vV — wy wt=2) _ e,

10

(33)



where
W = w1, (34)
and
© =w?9""V + 9, (35)

The two layers can therefore be collapsed into one single layer, and with a
linear activation function in all layers the whole perceptron collapses into
a simple perceptron with linear activation function. Such a perceptron can
only solve linearly separable problems.
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