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1. Feature map. The two patterns x(1) and x(2) shown in Figure 1(a) are
processed by a very simple convolutional network that has one convolution
layer with one single 4×4 kernel with ReLU units, zero threshold, weights
wij as given in Figure 1(b), and stride (1,1). The resulting feature map is
fed into a 2×2 max-pooling layer with stride (1,1). Finally there is a fully
connected output layer with one output unit O(µ) with Heaviside activation
function. For both patterns determine the resulting feature map and the
output of the max-pooling layer. Determine weights Wk and a threshold Θ
so that the network output is O(1) = 0 for input pattern x(1), and O(2) = 1
for input pattern x(2).

(a)x(1) x(2)
(b).

Figure 1: (a) Input patterns x(1) and x(2) with ±1 bits (� corresponds to
xi=-1 and � to xi=1). (b) Weights wij of a 4×4 kernel of a feature map.
The weights are either -1 or 1 (� corresponds to wij = −1 and � to wij = 1).
(Question 1).

Solution: Input to feature map of pattern x(1):
8 6
−2 −6
−6 −2
6 8

 . (1)

See Fig. 2 for an illustration of how to arrive at these numbers. Input to
feature map of pattern x(2): 

−2 −2
0 0
0 0
0 0

 . (2)

1



Figure 2: Illustrates calculation of input to feature map for the pattern S,
Eq. (1), Question 1.

Feature map of pattern x(1): 
8 6
0 0
0 0
6 8

 . (3)

Feature map of pattern x(2): 
0 0
0 0
0 0
0 0

 . (4)

Max-pooling layer of pattern x(1): 8
0
8

 . (5)

Max-pooling layer of pattern x(2): 0
0
0

 . (6)

With Wk = −δk1 and Θ = −4 we have

3∑
k=1

Wk

8
0
8


k

−Θ = −4 (7)
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and

3∑
k=1

Wk

0
0
0


k

−Θ = 4. (8)

Applying the Heaviside activation function results in the requested outputs.

2. Hopfield network with hidden units A Hopfield network with hidden
neurons can be used to learn a distribution of input patterns. Consider a
Hopfield network with N visible neurons vj and M hidden neurons hi. The
neurons are binary, with values −1 or +1. The network learns by updating
the visible neurons according to

vj ← sgn
[
b
(v)
j

]
with b

(v)
j =

M∑
i=1

hiwij, (9)

and by updating the hidden neurons according to

hi ← sgn
[
b
(h)
i

]
with b

(h)
i =

N∑
j=1

wijvj. (10)

In Equations (9) and (10), wij are the elements of a M ×N weight matrix.
Furthermore, sgn[b] is the signum function, sgn[b] = −1 if b < 0 and +1
otherwise. Show that the energy function

H = −
M∑
i=1

N∑
j=1

wijhivj (11)

can not increase upon updating one of the hidden neurons according to equa-
tion (10).
Solution: Denote the the value of hidden neuron i after the update by h′i.
Suppose that the kth hidden neuron changes sign. In this case:

h′i = hi − 2hiδik, (12)
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The energy after the update is

H ′ =−
M∑
i=1

N∑
j=1

wijh
′
ivj

=−
N∑
j=1

vj

M∑
i=1

wij(hi − 2hiδik)

=−
N∑
j=1

vj

M∑
i=1

wij(hi − 2hiδik)

=−
N∑
j=1

vj

[
M∑
i=1

wijhi − 2
M∑
i=1

wijhiδik

]

=−
N∑
j=1

vj

[
M∑
i=1

wijhi − 2wkjhk

]

=−
N∑
j=1

M∑
i=1

wijhivj + 2hk

N∑
j=1

wkjvj

=H + 2hkb
(h)
k .

If the kth hidden neuron changes sign, then hkb
(h)
k < 0.

x
(µ)
k

w
(1)
jk

V
(1,µ)
j

w
(2)
mj

V
(2,µ)
m

w
(3)
lm

V
(3,µ)
l = O

(µ)
l

Figure 3: Network for Question 3.

3. Backpropagation
Assuming the energy function

H =
1

2

∑
i,µ

(y
(µ)
i −O

(µ)
i )2, (13)

derive the update rule for the weights w
(L)
ij for L = 1, 2 and 3 for the network

shown in Figure 3.
Solution: see course book.
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4. XOR function. The Boolean XOR function takes two binary inputs.
For the inputs [−1,−1] and [1, 1] the function evaluates to −1, for the other
two inputs it evaluates to +1. Encode the XOR function as weights wij in a
Hopfield net with three neurons by storing the patterns x(1) = [−1,−1,−1],
x(2) = [1, 1,−1], x(3) = [−1, 1, 1], and x(4) = [1,−1, 1] using Hebb’s rule:

wij =
1

3

4∑
µ=1

x
(µ)
i x

(µ)
j where i, j = 1, . . . , 3. (14)

The update rule for bit Si is

Si ← sgn

[
3∑
j=1

wijSj

]
, (15)

where sgn[b] is the signum function, sgn[b] = −1 if b < 0 and +1 otherwise.
Feed the stored patterns to the net, and test whether they are stable under
synchronous updating. Conclude with one or two sentences whether the net-
work is useful for recognising the XOR function.

Solution:

3W =

1 1 1
1 1 1
1 1 1

+

 1 1 −1
1 1 −1
−1 −1 1

+

 1 −1 −1
−1 1 1
−1 1 1

+

 1 −1 1
−1 1 −1
1 −1 1


=

4 0 0
0 4 0
0 0 4

 . (16)

The weight matrix is proportional to the identity matrix. Therefore the
network reproduces all input patterns, it cannot single out the four patterns
corresponding to the XOR function.
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5. Gradient descent and momentum
Consider the given energy function H as a function of weight w as shown in
Fig. 4. Use the following gradient descent update rule,

δwn+1 = −η∂H
∂w

+ α δwn. (17)

Assume that the system is initially at point A, and that ηs = 1/2. The slope
of the segment AB in Fig. 4 is −s and the slope of the segment BC is 0.
The system starts at time step 1, and assume that δw0 = 0.

1. Find the number of time steps required to travel from point A to point
B for α = 0.

2. Repeat the previous calculation for the case α = 1/2, and graphically
find the solution of the final equation you obtain.

3. Indicate the results of the previous two parts on the same graph. Which
of the two cases: α = 0 and α = 1/2 converges faster?

4. What is the fate of the two systems α = 0 and α = 1/2 once they cross
point B?

L

H

w

M

A

B C

slope=−s

Figure 4: Energy as a function of weight for problem: Gradient descent and
momentum.

Solution: We calculate the total change in weight at time step n,∆wn =∑n
i=1 δwi, eqxuate ∆wn to L and solve for n. Proceed by solving for δwn.

Iterating the equation for the weight updates we find,

δwi+1 =
i∑

j=0

ηs αj + αi+1δw0, (18)

= ηs
1− αi+1

1− α
. (19)
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Next compute ∆wn,

∆wn =
n∑
i=1

δwi, (20)

= ηs

n∑
i=1

1− αi+1

1− α
, (21)

=
ηs

1− α

(
n− α1− αn

1− α

)
. (22)

Thus using ηs = 1/2 we obtain, for α = 0, ∆wn(α = 0) = n/2, and for
α = 1/2, ∆wn(α = 1/2) = n− 1 + 2−m. Equating ∆w = L we obtain,

nα=0 = 2L, (23)

nα=1/2 − 1 + 2−nα=1/2 = L. (24)

Plotting these relations, we see that nα=1/2 < nα=0, thus, α = 1/2 converges
faster.

f(n) = L+ 1− n

f(n) = 2−n

f(n)

n nα=0
nα=1/2

Figure 5: Graphical solution of problem : gradient descent and momentum.

After crossing point B, δw(α = 0) = 0. The weights cease to change. On the
other hand, δwα=1/2 > 0. The weights keep changing.

6. Linear activation function Consider using a linear activation function
g(b) = b in a fully connected simple perceptron with one output unit. Fed
with a training pattern x(µ), the output O(µ) is given by

O(µ) = wTx(µ) − θ. (25)

Here w is a column vector of weights, and θ is a scalar threshold. There are
p training patterns, µ = 1, . . . , p. Their target outputs are denoted by t(µ).
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For the perceptron concidered, the energy function

H =
1

2

p∑
µ=1

(
O(µ) − t(µ)

)2
(26)

has only one minimum, and it can be found analytically. In the following,
you will derive the threshold θ at the minimum.

a) Start by showing that the minimum implies

Gw = α+ θβ (27a)

βTw = θ + γ (27b)

with

G =
〈
xxT

〉
, α = 〈tx〉 , β = 〈x〉 and γ = 〈t〉 , (28)

where 〈. . . 〉 denotes an average over the training patterns.

b) Assume that G is invertible, with inverse G−1. Furthermore, assume that
βTG−1β 6= 1 and solve eqs. (27) for θ.

c) If, in a fully connected multi-layer perceptron, one uses a linear activation
function g(b) = b, it holds that

V (µ,`) = w(`)V (µ,`−1) − θ(`)

=
[
w(`)w(`−1)]V (µ,l−2) −

[
w(l)θ(`−1) + θ(`)

]
. (29)

Here, V (µ,`) is the µth neuron in the `th hidden layer. Furthermore, w(`) and
θ(`) are the weight matrix and theshold vector for the neurons in the `th hid-
den layer. Write at most three sentences where you, based on eq. (29), argue
that a non-linear activation function is essential for a multi-layer perceptron.
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Solution: a)

∂H

∂wi
=

∂

∂wi

1

2

p∑
µ=1

(
O(µ) − t(µ)

)2
=

p∑
µ=1

(
O(µ) − t(µ)

) ∂O(µ)

∂wi

=

p∑
µ=1

(
O(µ) − t(µ)

)
x
(µ)
i

=

p∑
µ=1

(
N∑
j=1

wjx
(µ)
j − θ − t(µ)

)
x
(µ)
i

=

p∑
µ=1

(
N∑
j=1

wjx
(µ)
j

)
x
(µ)
i +

p∑
µ=1

(−θ)x(µ)i +

p∑
µ=1

(
−t(µ)

)
x
(µ)
i

=

p∑
µ=1

N∑
j=1

wjx
(µ)
j x

(µ)
i −

p∑
µ=1

θx
(µ)
i −

p∑
µ=1

t(µ)x
(µ)
i

=
N∑
j=1

p∑
µ=1

wjx
(µ)
j x

(µ)
i − θ

p∑
µ=1

x
(µ)
i −

p∑
µ=1

t(µ)x
(µ)
i

=
N∑
j=1

wj

p∑
µ=1

x
(µ)
j x

(µ)
i − θ

p∑
µ=1

x
(µ)
i −

p∑
µ=1

t(µ)x
(µ)
i

=
N∑
j=1

wjpGji − θpβi − pαi = p

(
N∑
j=1

Gijwj − θβi − αi

)

∂H

∂wi
= 0⇒ Gw = α+ θβ (30)
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∂H

∂θ
=
∂

∂θ

1

2

p∑
µ=1

(
O(µ) − t(µ)

)2
=

p∑
µ=1

(
O(µ) − t(µ)

) ∂O(µ)

∂θ

=

p∑
µ=1

(
O(µ) − t(µ)

)
x
(µ)
i

=

p∑
µ=1

(
N∑
j=1

wjx
(µ)
j − θ − t(µ)

)
(−1)

=−
p∑

µ=1

(
N∑
j=1

wjx
(µ)
j

)
−

p∑
µ=1

(−θ)−
p∑

µ=1

(
−t(µ)

)
=−

p∑
µ=1

N∑
j=1

wjx
(µ)
j +

p∑
µ=1

θ +

p∑
µ=1

t(µ)

=−
N∑
j=1

wj

p∑
µ=1

x
(µ)
j + pθ + pγ

=− p
N∑
j=1

wjβj + pθ + pc

∂H

∂θ
= 0⇒ wTβ = θ + γ. (31)

b) The first equation gives:

w = G−1α+ θG−1β. (32)

Insert into the second, and use that wTβ = βTw:

βT
[
G−1α+ θG−1β

]
= θ + γ

⇒ βTG−1α+ θβTG−1β = θ + γ

⇒ θ
[
βTG−1β − 1

]
= γ − βTG−1α

⇒ θ =
γ − βTG−1α
βTG−1β − 1

.

c) The equation can be written as

V (µ,`) = WV (µ,`−2) −Θ, (33)

10



where

W = w(`)w(`−1), (34)

and

Θ = w(l)θ(`−1) + θ(`). (35)

The two layers can therefore be collapsed into one single layer, and with a
linear activation function in all layers the whole perceptron collapses into
a simple perceptron with linear activation function. Such a perceptron can
only solve linearly separable problems.
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