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1. One-step error probability in deterministic Hopfield model. In
the deterministic Hopfield model, the state Si of the i-th neuron is updated
according to the Mc-Culloch Pitts rule

Si ← sgn
( N∑
j=1

wijSj
)
. (1)

Here N is the number of neurons in the model, wij are the weights, and p

patterns ζ(µ) = (ζ
(µ)
1 , . . . , ζ

(µ)
N )T are stored in the network by assigning

wij =
1

N

p∑
µ=1

ζ
(µ)
i ζ

(µ)
j for i 6= j , and wii = 0 . (2)

a) Apply pattern ζ(ν) to the network. Derive the condition for bit ζ
(ν)
i of this

pattern to be stable after a single asynchronous update according to Eq. (1).
Rewrite this stability condition using the “cross-talk term”. (0.5p)

b) Take random patterns, ζ
(µ)
j = 1 or −1 with probability 1

2
. Derive an ap-

proximate expression for the probability that bit ζ
(ν)
i is stable after a single

asynchronous update according to Eq. (1), valid for large p and N . (1p)

2. Hopfield model: recognition of one pattern. The pattern shown in
Fig. 1 is stored in a Hopfield model using Hebb’s rule:

wij =
1

N
ζ
(1)
i ζ

(1)
j . (3)
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Figure 1: Question 2. Stored pattern ζ(1) with N = 4 bits, ζ
(1)
1 = 1, and

ζ
(1)
i = −1 for i = 2, 3, 4.
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Figure 2: Question 3. Multi-layer perceptron with three input units, two
hidden layers, and one output unit.

There are 24 four-bit patterns. Apply each of these to the Hopfield model
and apply one synchronous update according to Eq. (1). List the patterns
you obtain and discuss your results. (1p)

3. Back-propagation I. To train a multi-layer perceptron using back-
propagation one needs update formulae for the weights and thresholds in the
network. Derive these update formulae for the network shown in Fig. 2. The
weights for the first and second hidden layer, and for the output layer are
denoted by w

(1)
ji , w

(2)
kj , and W1k. The corresponding thresholds are denoted

by θ
(1)
j , θ

(2)
k , and Θ1, and the activation function by g(· · · ). The target value

for input pattern ξ(µ) is ζ
(µ)
1 . (2p)

4. Back-propagation II. Explain how to train a multi-layer perceptron by
back-propagation. Draw a flow-chart of the algorithm. In your discussion,
refer to and explain the following terms: “forward propagation”, “backward
propagation”, “hidden layer”, “energy function”, “gradient descent”, “local
energy minima”, “batch mode”, “training set”, “validation set”, “classifica-
tion error”, “overfitting”. Your answer must not be longer than one A4 page.
(1p)

5. Oja’s rule. The aim of unsupervised learning is to construct a net-
work that learns the properties of a distribution P (ξ) of input patterns



ξ = (ξ1, . . . , ξN)T. Consider a network with one linear output-unit ζ:

ζ =
N∑
j=1

wjξj . (4)

Under Oja’s learning rule

δwj = ηζ(ξj − ζwj) (5)

the weight vector w converges to a steady state w∗ with components w?j .
The steady state has the following properties:

i) |w?|2 ≡
∑N

j=1(w
∗
j )

2 = 1.

ii) w? is the leading eigenvector of the matrix C with elements Cij = 〈ξiξj〉.
Here 〈· · · 〉 denotes the average over P (ξ).

iii) w? maximises 〈ζ2〉.

a) Show that iii) follows from i) and ii). (1p)

b) Prove i) and ii), assuming that w? is a steady state. (1.5p)

c) Write down a generalisation of Oja’s rule that learns the first M principal
components for zero-mean data, 〈ξ〉 = 0. Discuss: how does the rule ensure
that the weight vectors remain normalised? (0.5p)

6. Kohonen’s algorithm. The update rule for a Kohonen network reads:

δwij = ηΛ(i, i0)(ξj − wij) . (6)

Here i0 labels the winning unit for pattern ξ = (ξ1, . . . , ξN)T. The neigh-
bourhood function Λ(i, i0) is a Gaussian

Λ(i, i0) = exp
(
− |ri − ri0|

2

2σ2

)
(7)

with width σ, and ri denotes the position of the i-th output neuron in the
output array.

a) Explain the meaning of the parameter σ in Kohonen’s algorithm. Discuss
the nature of the update rule in the limit of σ → 0. (0.5p)

b) Discuss and explain the implementation of Kohonen’s algorithm in a com-
puter program. In the discussion, refer to and explain the following terms:
“output array”, “neighbourhood function”, “ordering phase”, “convergence
phase”, “kinks”. Your answer must not be longer than one A4 page. (1p)

c) Assume that the input data are two-dimensional, and uniformly dis-
tributed within the unit disk. Illustrate the algorithm described in b) by
schematically drawing the input-space positions of the weight vectors wi at
the start of learning, at the end of the ordering phase, and at the end of
the convergence phase. Assume that the output array is one dimensional,
and that the number of output units M is large, yet much smaller than the



µ ξ
(µ)
1 ξ

(µ)
2 ζ

(µ)
1

1 1 1 0
2 1 0 1
3 0 1 1
4 0 0 0

Table 1: Question 7. Inputs and target values for the XOR problem.

number of input patterns. (0.5p)

7. Radial basis functions. Consider the Boolean XOR problem, Table 1.

a) Show that this problem cannot be solved by a simple perceptron. (0.5p)

b) The problem can be solved upon transforming input space using radial-
basis functions, and applying a simple perceptron to the transformed input
data. Show that the two-dimensional Boolean XOR problem can be solved
using the following two radial basis functions:

g1(ξ
(µ)) = exp(−|ξ(µ) −w1|2) with w1 = (1, 1)T ,

g2(ξ
(µ)) = exp(−|ξ(µ) −w2|2) with w2 = (0, 0)T . (8)

Draw the positions of the four input patterns in the transformed space
(g1, g2)

T, encoding the different target values. [Hint: to compute the states
of input patterns in the transformed space (g1, g2)

T, use the following ap-
proximations: exp(−1) ≈ 0.37, exp(−2) ≈ 0.14.] Explain the term “decision
boundary”, draw a decision boundary for the XOR problem, and give the
corresponding weights and thresholds for the simple perceptron. (1p)


