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Maximum score on this exam: 50 points (need 20 points to pass).
Maximum score for homework problems: 50 points (need 20 points to pass).
CTH ≥40 grade 3; ≥60 grade 4; ≥80 grade 5,
GU ≥40 grade G; ≥70 grade VG.

1. Short questions [12 points] For each of the following questions give
a concise answer within a few lines per question.

a) Give two examples of biological systems, one where a time delay model
is a suitable model and one where a discrete growth model is suitable.

Solution
Delay example: house flies (delay due to time spent as egg). Discrete
example: Synchronised growth of cells.

b) Explain what a period-doubling bifurcation is. In what kind of biolog-
ical models do you find them?

Solution
Found in discrete systems. Bifurcations where eigenvalue of map passes
through −1 (fixed point with stable oscillations becomes unstable and
periodic orbit forms).

c) Enzyme reactions involving substrate S, enzyme E, and product P can
be simplified using the Michaelis-Menten approximation. Describe the
Michaelis-Menten approximation and its core assumption.

Solution
Lecture notes 4.1

d) Consider a system in one spatial dimension that has a homogeneous
stable steady state. Explain how the analysis of a small spatio-temporal
perturbation can explain pattern formation in this system.
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Solution
Lecture notes 7.3.2

e) Give two examples of systems that show spiral wave patterns that can
be modeled using reaction-diffusion models.

Solution
Lecture notes 8.2

f) The SIR model for the number of susceptibles S, infectives I and re-
covered R was introduced in the lectures

Ṡ = −rSI
İ = rSI − αI

Ṙ = αI

State two shortcomings of this model, and propose how you would
improve the model to overcome these shortcomings.

Solution
Bernhard’s lecture notes 6.1

g) What is meant by the hypothesis of neutral evolution in the context of
population genetics?

Solution
It assumes that most of the variation of genome in a population can
be explained with mutations and genetic drift, rather than referring to
natural selection.

h) In the lectures the following equation for population homozygosity was
derived in the infinite alleles model

F
(t+1)
2 = (1− µ)2

[
1

N
+

(
1− 1

N

)
F

(t)
2

]
.

Here N is the population size and µ is the mutation rate per individual
and generation. Explain what is meant by homozygosity and explain
the different factors in this equation.

Solution
Bernhard’s lecture notes 8.3

2. Prevention of insect outbreaks [10 points] A model for the popu-
lation growth of insects subject to predation by birds is given by

Ṅ = rN

(
1− N

K

)
− BN

A+N
. (1)

Here N is the population size of insects and r, K, A, and B are positive
parameters.
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a) Explain the last term in the model and give plausible interpretations
of the parameters A and B.

Solution
The term describes reduction in growth due to predation. It models
predation with a saturation. When N is small, predation occurs pro-
portional to N , for example modeling a feeding rate proportional to
encounters between birds and insects for a constant bird population.
When N is large, predation saturates due to limited bird appetite. A
is the population scale for this saturation, and B is a constant death
rate (not per capita) of insects in the saturation limit.

In what follows, consider K = 2A.

b) Convert to dimensionless units to express Eq. (1) using a single dimen-
sionless parameter ρ (possible because K = 2A). Explicitly state ρ in
terms of the original dimensional parameters.

Solution
Let u = N/N0 and τ = t/t0

du

dτ
=

t0
N0

dN

dt
=

t0
N0

[rN0u

(
1− N0u

2A

)
− BN0u

A+N0u
]

Choose, for example, N0 = A and t0 = A/B to obtain

du

dτ
= ρu

(
1− u

2

)
− u

1 + u

with ρ = Ar/B.

An alternative is t0 = 1/r and N0 = A, giving

du

dτ
= u

(
1− u

2

)
− 1

ρ

u

1 + u

c) Find all fixed points of the system in subtask b) and find a condition
on the dimensionless parameter such that there are two positive steady
states, with one being stable and the other unstable. If you did not solve
subtask b), find a condition on the dimensional parameters instead.

Solution
The system has fixed points u∗1 = 0, u∗2 = (1 +

√
9− 8/ρ)/2, and

u∗3 = (1 −
√

9− 8/ρ)/2. The two latter fixed points exist if ρ ≥ 8/9.
The bifurcation diagram looks as follows:
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The stability was determined by geometrical inspection of the flow. For
small u, the flow reads du

dτ
≈ ρu−u, i.e. u∗1 goes from stable to unstable

as ρ passes 1 (in a transcritical bifurcation with u∗2). For large positive
u, the flow du

dτ
≈ −ρu2

2
is negative, making u∗2 stable. The intermediate

fixed point u∗3 is unstable when it is positive. In conclusion, the flow
has two positive steady states of opposite stability if 8/9 < ρ < 1.

d) In the past, insecticides were heavily employed as a reaction to in-
sect outbreaks. Model these insecticides by adding a constant negative
term, −I, into Eq. (1). Assume that the condition in subtask c) is sat-
isfied. Describe how you would estimate the minimal value Ic needed
to remove the insects permanently. No explicit solution is necessary.

Solution
Adding −I to Eq. (1), the dimensionless dynamics reads

du

dτ
= ρu

(
1− u

2

)
− u

1 + u
− I

B

When I = 0, the flow has three intersections with zero for the condition
in subtask c)

At an outbreak, the population lies at the large stable steady state. If
I > 0, this curve is lowered. To permanently remove the insects, it must
be lowered below the maximal value of the flow without insecticides.
The value can be estimated by solving ∂

∂u
du
dτ I=0

= 0 for u and inserting

the resulting value into Ic = B du
dτ I=0

.

e) Modern pest control strategies use early intervention by identifying
hotspots where the population is slightly above the unstable fixed point
in subtask c). Countermeasures are then implemented in these areas.
Estimate the value of Ic needed to remove the insects permanently in
this case. Compare to the value of Ic in subtask d).

Solution
In a hotspot, the initial population size u0 lies to the right of the un-
stable steady state. It is enough with a comparatively small value of
Ic, Ic = B du

dτ
(u0)|I=0, to move the unstable steady state to the right of

the hotspot population. Since du
dτ
(u0)|I=0 is smaller than the maximal

value for any u0, this strategy always lead to a smaller Ic compared to
the strategy in subtask d).
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3. Paradox of pesticides [8 points] Assume that a pest with population
size N interacts with a predator of population size P . A simple model for
their dynamics is given by the Lotka-Volterra model:

Ṅ = aN − bNP

Ṗ = cNP − dP
(2)

where a, b, c and d are positive parameters.

a) Explain the forms of the different terms in the Lotka-Volterra model (2).

Solution
Lecture notes 3.1.1

b) For this subtask, let a = b = c = d = 1 in Eq. (2) and sketch the
solution starting from N(0) = 2 and P (0) = 1 in the N -P plane. Also
plot the solutions N(t) and P (t) against time t in a separate plot. You
do not need to find an analytical solution, but the qualitative behavior
of pest and predator sizes should be clear. Briefly explain the dynamics.

Solution
Lecture notes 3.1.1

c) Analytically show that the average populations satisfy N = d/c and
P = a/b independent of their initial sizes.
Hint: Start by averaging the per capita growth of N in Eq. (2).

Solution
Average the per capita growth rate Ṅ/N in Eq. (2) over one period
time T

1

T

∫ T

0

dt
Ṅ

N
=

1

T

∫ T

0

dt[a− bP ] ⇒ 1

T

∫ T

0

dt
d

dt
lnN = a− bP

Since the integral on the left-hand side is zero over one period, it follows
that P = a/b.

Similarly for the Ṗ -equation

1

T

∫ T

0

dt
d

dt
lnP = cN − d

giving N = d/c.

d) Now, assume that pesticides are introduced to the system, leading to a
reduction of the per capita growth rate by a constant for both popula-
tions. Discuss, using the averages in subtask c), the impact of pesticides
on the populations. Do they result in an unintended behavior?

Solution
Applying the pesticide effectively reduces a and increases d (the growth
rate of predators become more negative). From subtask c), this implies
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that the average pest population N becomes larger and the predator
population P becomes smaller.

This is unwanted and paradoxial, because pesticides are added to re-
duce the pest population, but here it instead increases it on average.
This behavior has been observed multiple times when applying pesti-
cides to pests in nature, and is known as the paradox of pesticides.

4. Propagation of nerve signals [10 points] The following is a dedi-
mensionalized model for the propagation of nerve signals through an axon

∂V

∂t
= V 2 − V 3 −R +

∂2V

∂x2

∂R

∂t
= V − 9

2
R

(3)

Here V (x, t) is the plasma membrane potential. It describes the signal
strength at location x along an axon, where V = 0 means no signal. More-
over, R(x, t) models recovery from large outbursts.

a) Find all homogeneous steady-state solutions of the system (3).

Solution
The homogeneous steady states are

(V ∗
1 , R

∗
1) = (0, 0) , (V ∗

2 , R
∗
2) =

1

3

(
1,

2

9

)
, (V ∗

3 , R
∗
3) =

2

3

(
1,

2

9

)

b) Assume that V and R depend on x and t only through z = x − ct,
with a positive constant c. Introduce u(z) = V (x, t), v(z) = du

dz
, and

w(z) = R(x, t) to rewrite Eq. (3) as a dynamical system for u, v, w.

Solution
The system (3) becomes (replacing ∂

∂t
= −c d

dz
and ∂

∂x
= d

dz
) Introducing

u(z) = V (x, t), v(z) = du
dz

and w(z) = R(x, t), the system becomes

(replacing ∂V
∂t

= −cdu
dz

= −cv, ∂2V
∂x2

= ü = dv
dz

and ∂R
∂t

= −cdw
dz
)

du

dz
= v

dv

dz
= −cv − u2 + u3 + w

dw

dz
=

1

c

[
9

2
w − u

]

c) Assume that c is very small, so that the change in one of the variables is
fast. Use this assumption to reduce the dynamical system you derived
in subtask b) to a system of dimensionality 2.
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Solution
In the proposed limit, w relaxes quickly to its equilibrium w = 2u/9.
The dimensionality two system becomes

du

dz
= v

dv

dz
= −cv − u2 + u3 +

2

9
u

d) Sketch the phase-plane dynamics of the system in subtask c) and sketch
the wave profiles of allowed travelling wave solutions V (x, t) andR(x, t).

Solution
The fixed points have v∗ = 0, and u∗ was calculated in subtask a)

(u∗1, v
∗
1) = (0, 0) , (u∗2, v

∗
2) =

(
1

3
, 0

)
, (u∗3, v

∗
3) =

(
2

3
, 0

)
.

The stability matrix is

J =

(
0 1

2
9
− 2u+ 3u2 −c

)
⇒ trJ = −c < 0 and det J = −2

9
+ 2u− 3u2 .

The determinant evaluated at the fixed points becomes

det J(u∗1, v∗1) = −2

9
, det J(u∗2, v∗2) =

1

9
, det J(u∗3, v∗3) = −2

9
.

The first and third fixed points are saddle points. Since c is small, trJ
is small and negative, implying that the second fixed point is a stable
spiral.

Using that du
dz
> 0 for v > 0 and du

dz
< 0 for v < 0, the phase portrait

becomes

with corresponding allowed travelling wave solutions
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5. The Kuramoto model [10 points] Consider a number N of coupled
oscillators with phases θ1, θ2, . . . θN with the following time evolution

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) . (4)

Here ωi are constant natural angular velocities of the oscillators and K > 0
is constant. Define the complex order parameter as

r(t)eiψ(t) =
1

N

N∑
j=1

ei θj(t) , (5)

where r and ψ are real.

a) Commonly, oscillators are described using a second order differential
equation for θ. The oscillators in Eq. (4) have only the first time deriva-
tive of θ. Why are there no second order time derivatives in Eq. (4)?

Solution
The oscillators can be understood as overdamped and driven by the
other oscillators. A driven damped oscillator will oscillate (described
using a second-order differential equation) but eventually damping will
stabilize the dynamics to a steady state given by the driving. If the
time scale of the damping is short compared to the other time scales in
the system, we can neglect this transient behavior and only consider the
stabilized behavior. In this limit it is enough to consider a first-order
equation to describe a system with a stable steady state.

b) Show that Eq. (4) can be rewritten using the order parameter as

θ̇i = ωi +Kr(t) sin(ψ(t)− θi(t)) .

Solution
Rewrite Eq. (4) using the definition of the order parameter

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi) = ωi + Im

[
K

N

N∑
j=1

ei θj−i θi

]
= ωi + Im

[
Kreiψe−i θi

]
= ωi +Kr sin(ψ − θi)

c) Assume that for large times r(t) = const. and ψ(t) = Ωt, with con-
stant Ω. Show that the dynamics in subtask b) takes the following
form in a frame rotating with angular velocity Ω:

θ̇′i = ω′
i −Kr sin(θ′i) ,

where θ′i(t) is the phase in the rotating frame. What is the form of ω′
i?
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Solution
Changing coordinates to the rotating frame, θ′i = θi − Ωt, gives the
dynamics

θ̇′i = θ̇i − Ω = ωi − Ω︸ ︷︷ ︸
ω′
i

−Kr sin(θ′i) .

d) Consider the case where the natural angular velocities of all oscillators
in the rotating frame have the same magnitude, |ωi| = ω, but half are
positive, ω′

i = +ω for i = 1, . . . , N/2 and half are negative, ω′
i = −ω for

i = N/2+1, . . . , N (assume N even). What is the long-term dynamics
in this case? Does it depend on the parameters?

Solution
Using ωi = ±ω in the equation above, we have

θ̇′i = ±ω −Kr sin(θ′i) ,

In the steady state r(t) is constant, meaning that all equations for θ′i
decouples. If ω/(Kr) < 1, this system has two fixed points obtained
by solving θ̇′i = 0 for θ′i: θ

′∗
i = ±asin[ω/(Kr)] (stable) and θ′∗i = π −

±asin[ω/(Kr)] (unstable), where the stability follows by a geometrical
analysis of the plot θ̇′i against θ

′
i. If ω/(Kr) > 1, the system has no

fixed points, meaning θi increases/decreases indefinitely.

e) For the case in subtask d), use the definition (5) to find an expression
of the order parameter r in the steady state in terms of the parameters
K and ω0. Does at least one solution exist for all parameter values? If
not, explain what happens.

Solution
For the case ω/(Kr) < 1, evaluation of Eq. (5) with half oscillators
with θj = asin[ω/(Kr)], the other half with θj = −asin[ω/(Kr)] and
ψ(t) = 0 in the rotating frame gives

r =
1

N

N∑
j=1

ei θ
∗
j =

1

2
ei asin[ω/(Kr)] +

1

2
e−i asin[ω/(Kr)] = cos(asin[ω/(Kr)])

=
√

1− ω2/(Kr)2

Square this equation, multiply by r2 and solve for r to obtain:

r4 − r2 + ω2/K2 = 0 ⇒ r =
1√
2

√
1±

√
1− (2ω/K)2

For ω/K < 1/2 two solutions exist (the correct one turns out to be the
larger one according to numerical simulations). For ω/K > 1/2 no so-
lution exist to the self-consistency condition r =

√
1− ω2/(Kr)2. This

is a contradiction to the assumption that r takes a constant value in the
steady state. As a consequence the order parameter r will change indef-
initely, and consequently so must the phases since θ′∗ = ±asin[ω/(Kr)]
depends on r.
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