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Maximum score for homework problems: 50 points (need 20 points to pass).
CTH ≥40 grade 3; ≥60 grade 4; ≥80 grade 5,
GU ≥40 grade G; ≥70 grade VG.

1. Short questions [12 points] For each of the following questions give
a concise answer within a few lines per question.

a) Argue why it can be useful to analyze simple mathematical models,
even though we can use a computer to solve more complicated models.

Solution
Lecture Notes 1.1

b) Explain what a cobweb plot is and how it is generated. Illustrate using
an explicit example.

Solution
Lecture Notes 2.1

c) In the first problem set, you analyzed a time-delayed model with an
Allee effect. Explain what the Allee effect is and give an example of a
biological system where it may be important.

Solution
In systems where the population has a reduced reproduction or survival
capacity for small population sizes, the population may go extinct if the
population density becomes too small. This is the Allee effect. It may
for example be important in systems where anti-predator strategies
becomes inefficient in small groups.
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d) In the third problem set, you were supposed to use the Gillespie al-
gorithm to efficiently simulate a stochastic model. Explain how the
Gillespie algorithm works.

Solution
See problem formulation in problem set 3.

e) What is meant by the phase of oscillation? Why is it useful?

Solution
The phase characterises the state of an oscillator (which fraction of its
full oscillation cycle it has traversed). In reaction-diffusion equations it
is possible to have local oscillatory reactions that are coupled spatially
via diffusion. This results in a spatial distribution of oscillators with
different phases. Using contour lines of the phase, we can describe how
wave fronts propagate through the coupled oscillators (e.g. travelling
waves, spiral waves or other waves).

f) In the Kuramoto model the number of oscillators, N , is assumed to be
large. Discuss why this is assumed and what would be different if N
were not large.

Solution
Bernhard’s lecture notes 7

g) The Lotka-Volterra model is given by

u̇ = u(a− bv)

v̇ = v(cu− d)
(1)

where a, b, c, and d are positive parameters. Lotka derived these equa-
tions for a chemical reaction with c = b. Give an example of a chemical
reaction that could give rise to Eq. (1) for two of its reactants.

Solution
Interpreting b = c as the reaction rate at which the reactant U with
concentration u = [U ] reacts with V with concentration v = [V ] and
implementing the law of mass actions, one example reaction is

S + U
k0−−→ 2U

U + V
c−−→ 2V

V
d−−→ P

Here S is assumed to have a constant concentration s = [S], the reac-
tion rate k0 = a/s, and P is some rest product.

h) This problem is not part of the course material this year.
The figures below show trajectories (u(t), v(t)) following the Lotka-

Volterra dynamics (1) for three cases: without noise, with measurement
noise, and with dynamical noise. Explain which figure corresponds to
which case.
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v

i.

u

ii. iii.

Solution
Since the noise-free Lotka-Volterra equations have closed orbit solu-
tions, ii. must correspond to that case. Measurement noise only affects
the measured value, but not the dynamics, meaning case iii. corre-
sponds to that case. Dynamical noise affects the dynamics, giving
different closed orbits in the Lotka-Volterra system, i.e. case i.

2. Delay model of houseflies [12 points] Consider the following model
for the growth of a population of house flies of size N

Ṅ = −dN(t) + bN(t− T )(k − bsN(t− T )) . (2)

Here d is the per capita death rate and b is the per capita rate of laying eggs.
Furthermore, k, s and T are positive parameters.

a) Give a plausible explanation for the form of the system (2). What is
the significance of the parameters k, s and T?

Solution
The first term is a linear Malthus death term proportional to the pop-
ulation size, with per capita death rate d. The second term is a birth
term that takes into account the time T spent as an egg, i.e. at time
t the bN(t − T ) eggs laid at time t − T hatches to contribute to the
population. k − bsN(t − T ) is egg-to-adult survival ratio: k is maxi-
mal fraction that survives and s is a reduction in survival due to each
additional produced egg.

b) Find all steady states (N(t) = const.) of the Eq. (2). Find a condition
for one positive steady state to exist and use your explanation of the
parameters in subtask a) to argue why the form of the condition is
reasonable.

Solution
There are two steady states whenN∗ = 0 and whenN∗ = (bk−d)/(b2s).
The second steady state is positive if bk > d. This makes sense because
then the egg-laying rate times the fraction of eggs surviving to adult-
hood is larger than the death rate (the second-order term−b2sN(t−T )2
does not matter close to the transition of N from negative to positive).

Let b = 4 and k = d = s = 1 in the subtasks below.
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c) Show that close to the positive steady state, the dynamics of a small
perturbation η can be approximated by the form

dη

dt
≈ C1η(t) + C2η(t− T ) . (3)

What are the expressions for the coefficients C1 and C2?

Solution
The positive steady state is N∗ = (bk − d)/(b2s). Write N = (bk −
d)/(b2s) + η and expand the dynamics (2) to first order in η:

dη

dt
= −d

[
bk − d

b2s
+ η(t)

]
+ b

[
bk − d

b2s
+ η(t− T )

](
k − bs

[
bk − d

b2s
+ η(t− T )

])
= −d

[
bk − d

b2s
+ η(t)

]
+

bk − d

bs

(
k − bs

[
bk − d

b2s
+ η(t− T )

])
+ bη(t− T )

(
k − bk − d

b

)
= (bk − d)

1

b2s
[−d− (bk − d) + bk]− dη(t) + [−(bk − d) + bk − (bk − d)]η(t− T )

= −dη(t) + [2d− bk]η(t− T ) ,

i.e. on the form (3) with C1 = −d and C2 = 2d − bk. Using the
specified parameter values, we have C1 = −1 and C2 = −2 (note that
it is easier to solve this task by inserting b = 4 and k = d = s = 1 from
the beginning).

d) Use the ansatz η(t) = Aeλt in Eq. (3) to derive an equation for λ.

Solution
Inserting the ansatz gives

λAeλt = C1Ae
λt + C2Ae

λ(t−T ) .

⇒ λ = C1 + C2e
−λT = −1− 2e−λT .

e) Find a condition on T for which the steady state population of house-
flies is unstable. What kind of long-term behavior do you expect?

Solution
Write λ = λ′ + iλ′′. The system undergoes a bifurcation to unstable
when λ with maximal real part λ′ passes zero. Expressing the equations
in subtask d) with λ = iλ′′ (so that λ′ = 0) gives

iλ′′ = −1− 2e−iλ′′T = −1− 2[cos(−λ′′T ) + i sin(−λ′′T )]

⇒
{

0 = −1− 2 cos(λ′′T )
λ′′ = 2 sin(λ′′T )

The first equation gives

λ′′T = acos
(
−1

2

)
+ 2πn = 2π

3
+ 2πn ,
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where n is a positive integer. Inserting λ′′T into the second equation
gives

λ′′ =
√
3

Thus, the eigenvalue with maximal real part passes zero when T be-
comes larger than Tc = 1√

3
2π
3

(using n = 0 in the condition for λ′′T

above).

Since λ′′ is non-zero, we expect growing oscillations for solutions start-
ing close to the unstable steady state. Since the system does not have
stable attractors we expect the dynamics to approach a limit cycle
(could in principle also be a chaotic dynamics).

3. Model for spreading of a chronic disease [12 points] The following
is a model for spreading of a contagious chronic disease

Ṡ = (1− p)b(S + I +R)− βS
I

S + I +R
− dS

İ = βS
I

S + I +R
− dI

Ṙ = pb(S + I +R)− dR .

(4)

Here S is the number of susceptibles, I is the number of infectives, and R
is the number of immune individuals. All parameters are positive, b is birth
rate, d is death rate, β is infection rate, and p is the fraction of the population
that is vaccinated at birth, 0 < p ≤ 1.

a) How is the fact that the disease is chronic modeled?

Solution
There is no removal term of infectives, i.e. the infectives never turn
into recovered.

b) In the SIR model introduced in the lectures the total population size
was conserved. Show that this is not the case for Eq. (4). Explain
which part(s) of Eq. (4) causes this difference.

Solution
The change in the total population N = S + I +R is

Ṅ = Ṡ + İ + Ṙ = (b− d)N

The difference is that in Eq. (4) births and deaths are included in the
terms proportional to b and d, while in the SIR model introduced in
the lectures, births and deaths are neglected (or perfectly balanced by
letting b = d). Births and deaths must be included in Eq. (4) to model
vaccinations at birth.

c) Consider the case of b = d and find the vaccination fraction p needed
for the disease to die out if it starts with a small number of infectives.
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Solution
When b = d, then N = S+I+R is constant, and the equations simplify

Ṡ = (1− p)bN − β
SI

N
− bS

İ = β
SI

N
− bI

with R = N0 − S − I.

The disease dies out if the disease-free steady state (I∗, S∗) = (0, 1−p)N
is stable. The stability matrix becomes

J(I∗, S∗) =

(
−b −β(1− p)
0 β(1− p)− b

)
trJ(I∗, S∗) = β(1− p)− 2b

detJ(I∗, S∗) = b(b− β(1− p))

We have stability if trJ(I∗, S∗) < 0 and detJ(I∗, S∗) > 0. The first
condition, 2b > β(1−p) is satisfied if the second condition (b > β(1−p))
is satisfied. The condition on p is therefore p > 1− b

β
.

Altenatively, the condition can be obtained from solving İ < 0 at the
fixed point (I ≈ 0):

İ = β
SI

N
− bI = [β(1− p)− b]I < 0

d) Modify the model (4) so that, instead of being vaccinated at birth, each
susceptible chooses to vaccinate itself with a rate P . Consider the case
b = d, and find a condition on P such that the disease dies out if it
starts with a small number of infectives.

Solution
If each susceptible vaccinates at a rate P , then the total removal rate
of susceptibles is −PS. The modified model becomes

Ṡ = b(S + I +R)− βS
I

S + I +R
− dS − PS

İ = βS
I

S + I +R
− dI

Ṙ = −dR + PS .

The population is conserved when b = d, giving

Ṡ = bN − β
SI

N
− bS − PS

İ = β
SI

N
− bI
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The disease-free steady state is (I∗, S∗) = (0, b
b+P

)N . The stability
matrix becomes

J(I∗, S∗) =

(
−b− P −β b

b+P

0 β b
b+P
− b

)
trJ(I∗, S∗) = −(b+ P )− [b− β b

b+P
]

detJ(I∗, S∗) = (b− β b
b+P

)(b+ P )

Here detJ(I∗, S∗) > 0 if b− β b
b+P

> 0, which implies that trJ(I∗, S∗) <
0. The condition on P becomes P > β − b.

Altenatively, by solving İ < 0 at the fixed point:

İ = β
SI

N
− bI = [

β

b+ P
− 1]bI < 0

e) Compare your results in subtasks c) and d), starting from the same
initial population size. Which method requires the smallest vaccination
rate to keep the disease at low levels in the long run?

Solution
The instantaneous vaccination rate is V1 = bpN for the first method
and V2 = PS for the second one. In the long run, the susceptibles in
the second case approaches the fixed point value V2 = PS∗ = bP

b+P
N .

The ratio of the vaccination rates is

V1

V2

=
p

P
(b+ P ) .

The minimal vaccination rate for the two methods is obtained by in-
serting the minimal levels p = (β − b)/β and P = β − b (assuming
b < β, otherwise vaccination is not needed) from subtasks c) and d)

V1

V2

= 1 .

Thus, the two methods have the same vaccination rate (although they
have different ratio between number of susceptibles and recovered).

4. Model for formation of fingerprints [8 points] Recently, researchers
identified two proteins that create fingerprints during human gestation. Ridges
are formed by one protein promoting rising of the skin, while it is suppressed
by the other protein. The interaction between the proteins is modeled by

∂u

∂t
= r

(
a+

u2

v(1 +Ku2)

)
− bu+∇2u

∂v

∂t
= u2 − cv − d∇2v

(5)

Here u and v are concentrations of the proteins. All parameters are positive: r
is a growth rate, ra is a basal production, b and c are degradation rates, d > 1
is the ratio of diffusion coefficients, and 0 < K ≪ 1 is a small parameter.
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a) Inspect Eq. (5) to determine which of u and v is the activator and
inhibitor respectively. Motivate your answer.

Solution
Increased concentration of v reduces the growth of both u and v, while
increased concentration of u increases growth of v and of u for a range
of values. In conclusion, u is the activator and v is the inhibitor.

b) The parameterK is introduced to stabilize the dynamics. Qualitatively
explain how the dynamics is affected by the parameter K (you do not
need to do any calculations here).

Solution
Since K is small, the factor 1+Ku2 is only significantly different from
unity if u is very large, larger than 1/

√
K. This saturates the self-

activation at high activator levels.

c) Consider the case K = 0 and show that the system (5) has a single
homogeneous steady state (u∗, v∗).

Solution
We search for homogeneous steady states by neglecting the spatial de-
pendence in u and v. The second equation gives v∗ = [u∗]2/c, which
inserted in the first equation with K = 0 gives 0 = r

(
a+ c

)
− bu∗, with

solution u∗ = r
b
(a+ c).

The sketch below shows an example of the early stage of the pattern forma-
tion on a fingertip and three typical patterns (loop, whorl and arch):

loop whorl arch

Ridges spread as waves from two initiation sites at the boundaries, and one
initiation site at the center of the finger tip. The propagation and meeting
of these waves determine the final fingerprint pattern. In particular, small
initial fluctuations of the concentration at the center of the finger tip are
important. Assume that this concentration initially is on the form

u(x, t = 0) = u∗(1 + 0.1 exp[−ρ(x)2])
v(x, t = 0) = v∗

Here x is taken on the domain of the finger tip, with x = 0 at the center of
the finger tip. Moreover, (u∗, v∗) denotes the homogeneous steady state in
subtask c), assumed to be stable, and ρ(x) is a scalar function of space.

d) Below, three examples of ρ(x) are given

i. ρ(x) =∞
ii. ρ(x) = |x|
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iii. ρ(x) = (|x+ y|+ 0.01)|x|

Discuss and sketch the resulting fingerprint pattern you expect for the
cases i.–iii. Do the fingerprints show loop, whorl or arch patterns?

Solution

The initial condition u(x, t = 0) = u∗(1 + 0.1 exp[−ρ(x)2]) is a small
perturbation to the homogeneous steady state that decays the larger ρ
is. This decay localizes the perturbation close to ρ = 0.

For case i., ρ(x), the perturbation is simply zero, making the central
region homogeneous. The fingerprint grows from the boundaries, cre-
ating an arch-like structure.

For case ii., the initial condition is a dot-like region. This perturbation
is expected to give rise to waves growing out symmetrically, which could
give a pattern that is similar to the whorl.

For case iii., the initial condition is an elongated dot-like region, ex-
tended in the direction y = −x. This spatial extension may allow for a
ridge escaping the trapping of the ridges from the boundaries, forming
a pattern similar to the loop.

5. Wright-Fisher model [6 points] In the lectures, the steady-state
population homozygosity for the haploid Wright-Fisher model was derived
assuming the infinite-alleles model. For a large population and small muta-
tion rate, the result is

F2 =
1

1 + θ
. (6)

Here θ = 2Nµ, where N is the number of haploid individuals in the popula-
tion, and µ is the mutation rate per individual per generation. The infinite-
alleles model assumes that a mutation always creates a new allelic type never
encountered before.
Now consider a population of N haploid individuals with only two possible
allelic types, A and a. Assume that mutations change A to a (or a to A)
with mutation rate µ:

A
µ←→ a . (7)

a) Derive a formula for the steady-state population homozygosity for the
case in Eq. (7).

Hint: consider how the population homozygosity F
(t+1)
2 in generation

t + 1 depends on F
(t)
2 , solve for the steady state of this recursion, and

take the limits N →∞ and µ→ 0 keeping θ constant.

Solution
The recursion relation becomes

F
(t+1)
2 = (1− µ)2

[
1

N
+

(
1− 1

N

)
F

(t)
2

]
+ 2µ(1− µ)

(
1− 1

N

)
(1− F

(t)
2 ) .

9 (10)



The first term is the same as for the case discussed in the lectures, i.e.
the factor (1 − µ)2 is the probability that no mutation occurred for
either of the selected individuals, the first term in the brackets is the
probability to pick the same individual, the second term is the proba-
bility to pick different individuals times the previous homozygosity of
the previous generation. The second term gives the change in F2 if one
of the individuals has a mutation and the other not. The probability
for this is µ(1−µ) times two to count that either of the two individuals
could have the mutation. This is multiplied by the probability that
different individuals are chosen (otherwise they would have the same
number of mutations) times the probability that they were different at
the previous generation. The contribution for both individuals to have
a mutation can be neglected because µ2 is negligible compared to µ as
µ→ 0.

Multiplying the equation for F2 by N , neglecting µ2 and solving for the
fixed point F

(t)
2 = F ∗

2 gives

NF ∗
2 = 1 + (N − 1)F ∗

2 + 2µN

[
− 1

N
−
(
1− 1

N

)
F ∗
2 +

(
1− 1

N

)
(1− F ∗

2 )

]
≈ 1 + (N − 1)F ∗

2 + θ [0− F ∗
2 + (1− F ∗

2 )]

⇒ 0 = 1− F ∗
2 + θ [1− 2F ∗

2 ]

⇒ F ∗
2 =

1 + θ

1 + 2θ

where the limit N →∞ was taken with constant θ.

b) Compare the expression you obtained in subtask a) to Eq. (6). Which
one is larger? Why? Analyse how the difference between the two
expressions behaves in the limit of very small but non-zero θ, and in
the limit of very large θ. Explain the two behaviours.

Solution
The two expressions are equal only if

1

1 + θ
=

1 + θ

1 + 2θ
⇒ 1 + 2θ = (1 + θ)2 ⇒ θ = 0

This implies that the second expression is larger, because it is larger
when θ → ∞. This is reasonable because mutations contribute posi-
tively to the homozygosity.

For small θ, both cases behave as F ∗
2 ∼ 1− θ When there are no muta-

tions, the homozygosity approaches unity as expected due to fixation.
The first-order correction in θ is the same in the two cases. This is
because the factor 1−F2 in the contribution due to mutations is small
when homozygosity is high.

In the limit of large θ, the first case approaches F ∗
2 = 0, while the

second case approaches F ∗
2 = 1/2. When mutations are very frequent,

no alleles are the same in the infinite alleles model, while the population
is split randomly between the two types in the second case.
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