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1. Short questions [12 points] For each of the following questions give
a concise answer within a few lines per question.

a) Explain why we can use a continuous description of population growth,
even though the population size takes integer values.

Solution
In the continuous models, it is assumed that the population size is very
large compared to unity, meaning that the exact number of individ-
uals (fractional or not) does not matter for most practical purposes.
Moreover, in most cases we only know the current population size ap-
proximately, meaning that we anyway need to round the final result
according to the accuracy of the initial condition.

b) The plot below shows the map F (N) = 2.5N(1 − N) together with a
dashed line of unit slope. Copy the plot to your answer sheet and make
a cobweb plot, starting from a small value of N .
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Solution
The solution should approach the fixed point and have oscillations be-
cause the slope of the map at the fixed point lies between −1 and 0:

N

F
(N

)

c) Explain the difference between a quasi-steady state and a regular steady
state. Give an example of a system with a quasi-steady state.

Solution
A quasi-steady state is a state for which the dynamics approximately
does not change for a long time, but where, in the long run, the dy-
namics will move to a different state. For example in a stochastic
model, the distribution of individuals is approximately constant for a
long time, but since there is a finite probability that the population
goes extinct, the distribution must drift towards a Dirac delta function
at zero population as time goes to infinity.

d) Consider a diffusing concentration n(x, t) in one spatial dimension sat-
isfying the continuity equation

0 =
∂

∂t
n(x, t) +

∂

∂x
j(x, t)− f(x, t) .

Use advection and Fick’s law, jdiffusion = −D ∂n
∂x
, to write down the

corresponding reaction-advection-diffusion equation.

Solution
Using advection and Fick’s law, the total flux becomes j(x, t) = v(x, t)n(x, t)−
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D ∂n
∂x
, giving the reaction-advection-diffusion equation

∂tn(x, t) = f(x, t)− ∂x(v(x, t)n(x, t)) +D
∂2n

∂x2

e) Again, consider the continuity and reaction-advection-diffusion equa-
tion in the previous subtask. Assume that n satisfies the dynamical
system ṅ(x, t) = g(n(x, t)) in absence of advection and diffusion. Ex-
plain what the role of g is in the reaction-advection-diffusion equation.

Assume that x satisfies the dynamical system ẋ = h(x, t) in absence
of diffusion. Explain what the role of h is in the reaction-advection-
diffusion equation.

Solution
In absence of advection and diffusion (j = 0), both equations read
∂n
∂t

= f(n(x, t)) implying dn
dt

= f(n(x, t)) (since ẋ = 0 when j = 0).
We therefore identify g(n(x, t)) with the source term f(n(x, t)) in the
reaction-advection-diffusion equation.

In absence of diffusion, the flux is given by the advective contribution,
j = v(x, t)n(x, t), originating from particles that follows a fluid flow,
ẋ = v(x, t). Thus, h(x, t) exactly corresponds to the flow v(x, t) in the
reaction-advection-diffusion equation.

f) What is meant by the ‘order parameters’ in the Kuramoto model?
What do they quantify?

Solution
Bernhard’s lecture notes 2.4.

g) Oscillations are often modeled by second-order time derivatives. Ex-
plain why only first-order derivatives appear in the Kuramoto model.

Solution
The oscillators in the Kuramoto model can be understood as driven
and overdamped. A driven damped oscillator will oscillate (second-
order differential equation as for the harmonic oscillator) but eventually
damping will stabilize the dynamics to a steady state given by the
driving. If the time scale of the damping is short compared to the
other time scales in the system, we can neglect this transient behavior
and only consider the stabilized behavior. In this limit it is enough
to consider a first-order equation to describe a system with a stable
steady state.

h) This problem is not part of the course material this year.
Explain what the difference is between measurement noise and dynam-
ical noise in a time series obtained from experimental measurements of
a biological process.

Solution
The measurement noise corresponds to fluctuations in an observable
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due to inaccuracies in a measurement device. The dynamical noise on
the other hand corresponds to inherent fluctuations in the evolution
of the underlying dynamics, for example due to imperfections of the
model or due to stochastic fluctuations.
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2. Von Foerster’s doomsday model [10 points] Based on a fit to data
on worldwide human population from the last two millenia, von Foerster
suggested in 1962 the following growth model for the human population N(t)

Ṅ =
r

B
N2 , (1)

where r and B are positive parameters, and N(0) is smaller than B.

a) It is possible to rewrite Eq. (1) on the form

Ṅ = rN

(
1− N

K(N)

)
with a function K that depends on N . What is the form of K(N)?

Solution
Equating the two expressions for Ṅ gives

r

B
N2 = rN

(
1− N

K(N)

)
⇒ N

K(N)
= 1− N

B
⇒ K(N) =

N

1−N/B

b) Explain why the form of K(N) in subtask a) with N < B can be
argued to be a good model for growth of the human population, but
perhaps not for other species. Does something strange happen when
N becomes larger than B?

Solution
K(N) can be interpreted as a population-dependent carrying capacity.
WhenN < B, this carrying capacity increases as the human population
increases. This can be argued to be a good model for humans that
have been (and possibly are) able to increase their carrying capacity
through inventions. Animals are not expected to be able to increase
their carrying capacity in this way.

When N approaches B, the carrying capacity goes to infinity, to be-
come negative for N > B. This is something strange indeed, and the
interpretation of K as a carrying capacity is not longer justified.

c) Solve the dynamics for N in Eq. (1) as a function of time, given the
initial size N0 at t = 0.

Solution
Solving Eq. (1) by separation of variables

dt =
B

r

dN

N2
⇒ t = −B

r

[
1

N
− 1

N0

]
Solve for N to obtain

N(t) =
1

1
N0

− r
B
t
,

where N0 is the population at t = 0.
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d) Von Foerster used the solution in subtask c), with fitted B/r ≈ 9/5·1011
years, to predict the future population. Starting from 3 billion people
in 1963, what population size did he predict for the current year (2023)?
Is the answer reasonable? If not, why does the model fail?

Solution
Inserting N0 = 3·109, B/r ≈ 9/5·1011 and t =60 years into the solution
in subtask c) give

N(t) =
1

1
3·109 −

5
9·101160

=
3 · 109

1− 1
= ∞

I.e. the human population grows to infinity when the denominator be-
comes zero. This is of course unreasonable, looking at the population
size today. There are several arguments of why the model gives unrea-
sonable predictions, for example it is unrealistic with infinite carrying
capacity or that the per capita growth rate becomes infinite as N → ∞.
This example shows that a model based on interpolation of data often
fails for the purpose of extrapolation.
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3. Model for spreading of measles [10 points] The following is a
model for spreading of measles in a population of S susceptibles, I infectives,
and R recovered/immune

Ṡ = (1− p)b(S + I +R)− βS
I

S + I +R
− dS

İ = βS
I

S + I +R
− αI − d(1 + ϵ)I

Ṙ = pb(S + I +R) + αI − dR

(2)

A fraction p (0 ≤ p ≤ 1) of newborns are vaccinated. The parameters b, d,
β and α are positive and 0 < ϵ ≪ 1.

a) Give brief explanations of the different terms in Eq. (2). How is the
deadliness of measles modeled?

Solution
A fraction 1− p of births go into susceptibles, modeled by (1− p)b(S+
I +R), and the rest (pb(S + I +R)) go into recovered/immune. Since
the total number of births is proportional to the total population size
S +R+ I, all individuals are assumed to give birth at equal rate. It is
assumed that vaccination and recovery gives lifelong immunity.

There are three death terms, all proportional to the number of individ-
uals in respective category. The model assumes that the death rate is
increased by a factor 1 + ϵ for infectives, taking account for the dead-
liness of the disease.

The terms βSI/(S + I +R) is the per susceptible infection term, pro-
portional to the fraction of the population being infective (the normal-
ization 1/(S + I +R) is usually included in β, but the population size
is not constant here). The terms αI is the removal rate of infectives
due to recovery.

b) Find a condition on the parameters such that the model (2) has at least
one disease-free steady state with positive population size. Comment
on the form of this steady state when p = 0 and when p = 1.

Solution
Disease free states have I = 0, giving İ = 0 in (2), leaving

Ṡ = (1− p)b(S +R)− dS

Ṙ = pb(S +R)− dR .

For general parameter values, this system only has the fixed-point R∗ =
S∗ = 0, corresponding to an extinct population. Solving the system
with the requirement that either R or S is non-zero gives the condition
b = d. For this case, there is a line of fixed points satisfying

pS∗ = (1− p)R∗ .
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When p = 0 we have R∗ = 0, i.e. the population consists of only
susceptibles in the steady state (if we wait long enough after the disease
dies out also all recovered die). When p = 1 we have S∗ = 0, i.e. the
population consists of only immune/recovered in the steady state since
all newborns belong to this category after vaccination.

c) Assume that the condition you found in subtask b) is satisfied and that
the initial population is equal to the disease-free steady state. Find a
condition on the parameters such that disease introduced by a small
number of infectives in the population does not spread.

Solution
Having a single compartment for infectives, I, the next-generation ma-
trix is scalar. The initial change in I is therefore given by

İ|t=0 ≈ (β
S∗

S∗ +R∗ − α− d(1 + ϵ))I0 = (β(1− p)− α− d(1 + ϵ))I0

The condition for the disease not to spread is

β(1− p) < α+ d(1 + ϵ) .

This is equivalent to a basic reproduction number r0 =
β(1−p)

α+d(1+ϵ)
.

d) Assuming that the model does not allow limit cycle or chaotic solutions,
what is the long-term behavior of S, I, and R according to the model
without vaccination (measles, being a contagious disease, spreads in
this case)? If you find that the result is unrealistic, explain what prop-
erty of the model underlies your finding and discuss how the model
could be improved to become more realistic.
Hint: It may be helpful to look at the dynamics of the total population.

Solution
Without vaccination, the positive disease-free steady state is unstable,
meaning that the population will end up at the fixed point S∗ = I∗ =
R∗ = 0, i.e. the population goes extinct. The reason for this is the
mortality ϵ, slowly reducing the total population size N = S + I + R,
not allowing a constant population

Ṅ = Ṡ + İ + Ṙ = (b− d)(S + I +R)− dϵI = −dϵI

As long as I > 0, the total population will decline until it reaches
N = 0 (all other steady states with I = 0 are unstable according to the
previous subtasks). Alternatively, one can evaluate the linear stability
for S∗ = I∗ = R∗ = 0, to find that it is stable for all parameters.

The problem with the model is related to the fact that without infec-
tions, the growth is linear, requiring a sensitive balance between births
and deaths. We can resolve this problem by introducing a carrying
capacity, defining a stable steady state in the absence of the disease.
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4. Diffusion-driven instability in a periodic domain [10 points]
Consider a reaction-diffusion equation for two concentrations u(x, t) and
v(x, t) in one spatial dimension

∂u

∂t
= fu(u, v) +Du

∂2u

∂x2

∂v

∂t
= fv(u, v) +Dv

∂2v

∂x2

in a system of length L. Compactly, we write

∂n

∂t
=f(n) + D

∂2n

∂x2
, with n=

(
u
v

)
, f=

(
fu
fv

)
and D=

(
Du 0
0 Dv

)
. (3)

a) What are the dimensions of u, fu and Du?

Solution
Being a concentrations, the dimension of u is either size over length,
N/L, or simply one over length, 1/L if the size is considered dimension-
less (both are accepted). The dimension of fu must have an additional
time factor compared to n, [fu] = N/(LT ), due to the partial deriva-
tive on the left-hand side. The dimension of the diffusion coefficient is
[Du] = L2/T to match up with the other terms.

b) Assume that n∗ is a spatially homogeneous steady state to the sys-
tem (3). Make a small spatio-temporal perturbation to this steady
state and show, by separations of variables, that the spatial part of the
perturbation, X(x), satisfies Helmholz equation

d2

dx2
X(x) = −k2X(x) .

Here k is a constant coming from the separation of variables.

Solution
Following the lecture notes, inserting n = n∗ + δn(x, t) into Eq. (3)
gives to linear order in δn

∂

∂t
δn = J(n∗)δn+

∂2

∂x2
Dδn

Separation of variables using the ansatz δn(x, t) = T (t)X(x)δn0 with
constant δn0 gives the Helmholz equation

∂

∂t
T (t)X(x)δn0 = T (t)X(x)J(n∗)δn0 + T (t)

∂2

∂x2
X(x)Dδn0

⇒ T ′(t)

T (t)
δn0 = J(n∗)δn0 +

X ′′(x)

X(x)
Dδn0 .

Only the last term depends on x, meaning that if x is varied, the last
term is constant, implying that the prefactor X ′′(x)/X(x) is constant.
Denoting the constant −k2 gives the sought Helmholz equation.
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c) Solve the Helmholz equation for no flux boundary conditions (vanish-
ing derivatives at the boundaries). Which wave numbers are allowed?
Illustrate the patterns corresponding to the two first positive wave num-
bers.

Solution
The solution to Helmholz equation is

X(x) = A cos(kx) +B sin(kx)

Implementing the boundary conditions X ′(0) = X ′(L) = 0, using
X ′(x) = −Ak sin(kx) +Bk cos(kx), gives

X(x) = A cos(kx) with k = 0,
π

L
,
2π

L
, . . .

Assuming color where the concentration is above the steady state, the
pattern for the first two non-zero wave numbers are (the upper bound
should be L, not 1):

d) Now consider instead a circular domain with periodic boundary con-
ditions and circumference L. Which wave numbers are allowed in this
case? Describe the patterns corresponding to the two first positive wave
numbers.

Solution
As before, the solution to the Helmholz equation

X(x) = A cos(kx) +B sin(kx)

Use periodic boundary condition: X(x) = X(x + L) and dX
dx

(x) =
dX
dx

(x + L). These conditions are true for any x. Choose x = 0 to
obtain

A = A cos(kL) +B sin(kL)

Bk = −Ak sin(kL) +Bk cos(kL)

One solution is k = 0. If k ̸= 0, we simplify the second equation
by dividing it by k. Multiply the first equation by B and the second
equation by A and subtract to obtain

0 = (A2 +B2) sin(kL) .

The only non-trivial solution must have sin(kL) = 0, i.e. k is a mul-
tiple of π/L. Inserting sin(kL) = 0 into the original equations gives
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A = A cos(kL) and B = B cos(kL). We find the additional constraint
cos(kL) = +1. In conclusion k must take values 0, 2π/L, 4π/L, . . .

The pattern for the first non-zero mode is a colored half-circle, the
pattern for the second mode is two equally-separated colored quar-
tercircles. The starting position of the patterns are arbitrary due to
circular symmetry.
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5. Coalescent process [8 points]

a) The coalescent process is a model for neutral sample genealogies, con-
sistent with the Fisher-Wright model. Describe the coalescent process
in its simplest form, for a sample of size n from a large population,
N ≫ n, and derive the following distribution of the time Tj to the next
coalescent event, given that there are j ancestral lines:

P (Tj) = λj exp(−λjTj) with λj =
1

N

(
j

2

)
. (4)

Solution
See pages 14-16 in Bernhard’s lecture notes.

b) Tajima suggested a test for selection by comparing whether a genetic
mosaic is compatible with a neutral sample genealogy, or not. The
test is based upon two different estimators for the mutation parameter
θ = 2Nµ that are derived from the following equations

⟨Sn⟩ = θ
n−1∑
j=1

1

j
and

〈 1(
n
2

) ∑
i<j

∆ij

〉
= θ . (5)

Here ⟨Sn⟩ is the average number of single-nucleotide polymorphisms
(SNPs) in the sample of size n, and ∆ij is the number of SNPs between
two individuals in the sample, i and j. Derive the two relations in
Eq. (5) using the coalescent process.
Hint: For the first relation, use that the number Sn of SNPs in a given
genealogy for n individuals is Poisson distributed,

P (Sn = j) =
(µT

(n)
tot )

j

j!
exp(−µT

(n)
tot ) ,

where T
(n)
tot is the total branch length of the genealogy. Compute the

expected number of SNPs, and then average over genealogies. For the
second relation, compute ⟨∆ij⟩ by considering n = 2.

Solution
Given in Exam20220317
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